Math, asked by b191438, 7 months ago

solve the following
6x^3+12x^2-18x/3x​

Answers

Answered by aryan073
8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

Solve the following

☑ 6x³+12x²-18/3x

 \:  \dagger   \large\boxed {\displaystyle \bf{ \color{cyan} \: answer}}

 \:  \implies \displaystyle \sf{ \color{red} \frac{ {6x}^{3}  +  {12x}^{2} - 18x }{3x} }

 \:  \:  \implies \displaystyle \red { \sf{ \frac{x(6 {x}^{2} + 12x - 18 )}{3x} }}

 \:  \implies  \displaystyle \red { \sf{ \cancel \frac{x}{x}  \frac{6 {x}^{2}  + 12 x - 18 }{3} }}

 \:  \:  \implies \displaystyle \red{ \sf{ \frac{6 {x}^{2} + 12x - 18 }{3} }}

 \:  \implies \displaystyle \red{ \sf{ \:  \frac{3( {2x}^{2} + 4x - 6) }{3} }}

 \:  \:  \implies \displaystyle  \red{ \sf{ \cancel \frac{3}{3}  \color{orange} \:   \:  {2x}^{2}  + 4x - 6}}

 \:  \:  \implies \displaystyle \red{ \sf{ {2x}^{2}  + 4x - 6 = 0}}

 \:  \:  \\  \implies \displaystyle \red{ \sf{ {x}^{2}  + 2x - 3 = 0}}

 \:  \:  \\  \implies \displaystyle \red{ \sf{ {x}^{2} \:  + 3x -x - 3 = 0}}

 \:   \\ \implies \displaystyle \red{ \sf{x(x + 3) - 1(x + 3) = 0}}

 \:   \\ \implies \displaystyle \red{ \sf{(x - 1) = 0 \: and \: (x + 3) = 0}}

 \:   \implies \displaystyle \red{ \sf{x = 1 \: and \: x =  - 3}}

 \:  \:  \red\bigstar  \underline{ \boxed{ \sf{x = 1 \: and \: x =  - 3 \: are \: the \: roots \: of \: this \: equation}}}

Similar questions