Math, asked by vasundhara742514, 5 hours ago

Solve the following: (81)^-4 ÷ (729)^2-x = 9^4x

Answers

Answered by vipinkumar212003
7

Answer:

 \frac{ {(81)}^{ - 4} }{ {(729)}^{2 - x} }  =  {(9)}^{4x}  \\ \\    \frac{ {( {3}^{4} )}^{ - 4} }{ {( {3}^{6} )}^{2 - x} }  =  {( {3}^{2} )}^{4x} \\  \\  \frac{ {(3)}^{ - 16} }{ {(3)}^{12 - 6x} }  =  {(3)}^{8x} \\  \\  {(3)}^{ - 16 - (12 - 6x)}  =  {(3)}^{8x}  \\  \\  {3}^{ - 28 + 6x}  =  {3}^{8x}  \\  \\  \color{blue}{ \underline{on \:comparing  : }} \\  - 28 + 6x = 8x \\  - 28 = 2x \\  \boxed{x =  - 14} \\  \\\red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Answered by lalitgumber1128
3

Step-by-step explanation:

 {81}^{ - 4}  \div  {729}^{2 - x}  =  {9}^{4x}  \\  {(81)}^{ - 4}  \div  {(729)}^{2 - x}  =  {(9)}^{4x}  \\  {( {9}^{2} )}^{ - 4}  \div  {( {9}^{3}) }^{2 - x}  =  {9}^{4x}  \\  {9}^{(2)( - 4)}  \div  {9}^{(3)(2 - x)}  =  {9}^{4x}  \\  {9}^{ - 8}  \div  {9}^{6 - 3x}  =  {9}^{4x} \\   {9}^{ (- 8 )- (6 - 3x)}  =  {9}^{4x}  \\  {9}^{ ( - 8 - 6 + 3x)}  =  {9}^{ 4x}  \\  {9}^{( - 14 + 3x)}  =  {9}^{4x}  \\  \\  \\  - 14 + 3x = 4x \\ \:  - 14 = 4x - 3x \\  - 14 = x

Hence ,

the value of x = -14

Similar questions
Math, 8 months ago