Math, asked by spacelover123, 5 months ago

Solve the following.

(a - b) (a² + b² + ab) - (a + b) (a² + b² - ab)

Answers

Answered by Anonymous
150

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)}\bf{=-2b^3}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)}

\bf{Step\:\:1:Expand\:\:\left(a-b\right)\left(a^2+b^2+ab\right)}

\sf{\left(a-b\right)\left(a^2+b^2+ab\right)}

\sf{=aa^2+ab^2+aab+\left(-b\right)a^2+\left(-b\right)b^2+\left(-b\right)ab}

\sf{=a^2a+ab^2+aab-a^2b-b^2b-abb}

\sf{=a^3+ab^2+a^2b-a^2b-b^3-ab^2}

\sf{=a^3+a^2b-a^2b+ab^2-ab^2-b^3}

\sf{=a^3+ab^2-ab^2-b^3}

\sf{=a^3-b^3}

\boxed{\sf{\left(a-b\right)\left(a^2+b^2+ab\right)=a^3-b^3}}

\sf{\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)}

\sf{=a^3-b^3-\left(a+b\right)\left(a^2+b^2-ab\right)}

\bf{Step\:\:2:Expand\:\:-(a+b)\left(a^{2}+b^{2}-a b\right)}

\sf{\left(a+b\right)\left(a^2+b^2-ab\right)}

\sf{=aa^2+ab^2+a\left(-ab\right)+ba^2+bb^2+b\left(-ab\right)}

\sf{=a^2a+ab^2-aab+a^2b+b^2b-abb}

\sf{=a^3+ab^2-a^2b+a^2b+b^3-ab^2}

\sf{=a^3-a^2b+a^2b+ab^2-ab^2+b^3}

\sf{=a^3+ab^2-ab^2+b^3}

\sf{=a^3+b^3}

____________________

\sf{-(a+b)\left(a^{2}+b^{2}-a b\right)}

\sf{=-\left(a^3\right)-\left(b^3\right)}

\sf{=-a^3-b^3}

\boxed{\sf{-(a+b)\left(a^{2}+b^{2}-a b\right)=-a^3-b^3}}

\sf{a^3-b^3-\left(a+b\right)\left(a^2+b^2-ab\right)}

\sf{=a^3-b^3-a^3-b^3}

\sf{=a^3-a^3-b^3-b^3}

\sf{=-b^3-b^3}

\huge\boxed{\sf{=-2b^3}}


Cynefin: Awesome。◕‿◕。
Anonymous: Great!
EliteSoul: Great
MisterIncredible: Nice (ʘᗩʘ’)
Swarup1998: Nice work!
Answered by vanshikavikal448
43

refer the image for answer...!!

answer = -2b³

Attachments:

MisterIncredible: Nice (‘◉⌓◉’)
Swarup1998: Nice work!
Similar questions