Math, asked by Anonymous, 4 months ago

solve the Following
A D N An
7 3 8 -​

Answers

Answered by Anonymous
9

\huge{\blue{\boxed{\green{\underline{\orange{\mathbb{Question✩}}}}}}}

a=7, d=3, n=8 find an term of A.P

\bold{\huge\pink{\boxed{{{ANSWER ➺ 28}}}}}

STEP BY STEP SOLUTION :-

 \huge \mathcal \color{maroon}{Given :-}

\\ a \: = 7 \\ d = 3 \:  \:  \\ n = 8 \:

 \huge \mathcal \color{maroon}{To \: find :-}

{}^{a}n = ?

 \huge \mathcal \color{maroon}{Solution :-}

{}^{a} n = a + (n - 1)d \\ (by \: putting \: the \: value \: of \: a,d \: and \: n) \\ ⟹7 + (8 - 1)3 \\ ⟹7 + (7 \times 3) \\ ⟹7 + 21 \:  \:  \:  \:  \:  \:  \\ ⟹an=28 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \huge \mathcal \color{maroon}{Information :- }

Here, \:  \\  \:  \: ➯ \: a=1st \: term \: of \: \: AP \\ ➯ \: d = common \: diffrence \\ ➯ \: n = number \: of \: terms \\ ➯ \:  {}^{a} n = last \: term \\ ➯ \: formula \: used = a + (n - 1)d

Answered by Anonymous
0

Answer:

hello

here is your answer

Attachments:
Similar questions