Math, asked by devansh9257, 16 days ago

Solve the following and elaborate all steps

 \int \:  \frac{sinx}{sin8x \: sin7x}  \: dx

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm  \frac{sinx}{sin8x \: sin7x} \: dx \\

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{sin(8x - 7x)}{sin8x \: sin7x} \: dx \\

We know,

\boxed{ \rm{ \:sin(x - y) = sinx \: cosy \:  -  \: siny \: cosx \:  \: }} \\

So, using this result, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{sin8x \: cos7x - sin7x \: cos8x}{sin8x \: sin7x} \: dx \\

\rm \:  =  \: \displaystyle\int\rm  \frac{sin8x \: cos7x}{sin8x \: sin7x} \: dx  - \displaystyle\int\rm  \frac{sin7x \: cos8x}{sin8x \: sin7x} \: dx \\

\rm \:  = \displaystyle\int\rm cot7x \: dx \:  -  \: \displaystyle\int\rm cot8x \: dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm cotx \: dx \:  =  \: log |sinx|  + c \: }} \\

So, using this result, we get

\rm \:  = \dfrac{log |sin7x| }{7}  - \dfrac{log |sin8x| }{8}  + c \\

Hence,

\rm \:\displaystyle\int\rm  \frac{sinx}{sin8x \: sin7x}dx = \dfrac{log |sin7x| }{7}  - \dfrac{log |sin8x| }{8}  + c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions