Math, asked by daniel2feb, 3 months ago

Solve the following briefly : [2 marks each]
1. Check if 1 and 3 are the zeroes of the polynomial x3 - 6x2 + 11x-6.​

Answers

Answered by CuteAnswerer
13

QUESTION :

  • Check if 1 and 3 are the zeroes of the polynomial \bf{x ^3  - 6x^2 + 11x-6} .

SOLUTION :

REQUIRED KNOWLEDGE :

  • If 1 and 3 are the zeros of the given polynomial then putting these values we will get p(x) = 0 ,i.e. p(1) = 0 and p(3) =0 .

Now,

 \implies \sf{p(x) =x ^3  - 6x^2 + 11x-6 } \\  \\

\implies \sf{p(1) =(1 )^3  - 6 \times (1)^2 + 11 \times 1-6 } \\  \\

\implies \sf{p(1) =1  - 6 \times 1+ 11 \times 1-6 } \\  \\

\implies \sf{p(1) =1  - 6 + 11-6 } \\  \\

\implies \sf{p(1) =12 - 12 } \\  \\

\implies  \underline{\huge{ \red{\bf{p(1) =0} }}}

____________________________

 \implies \sf{p(x) =x ^3  - 6x^2 + 11x-6 } \\  \\

\implies \sf{p(3) =(3)^3  - 6 \times (3)^2 + 11 \times 3-6 } \\  \\

 \implies \sf{p(3) =27  - 6 \times 9+ 11 \times 3-6 } \\  \\

 \implies \sf{p(3) =27  - 54 + 33-6 } \\  \\

\implies \sf{p(3) =60 - 60 } \\  \\

\implies  \underline{ \huge {\red{\bf{p(3) =0} }}}

 \huge{ \pink{\therefore}}1 and 3 are the zeros of the given polynomial .

Similar questions