solve the following by gauss Jordan method 10x+y+z=12,x+10y-z=10,x-2y+10z=9
Answers
Step-by-step explanation:
CONCEPT- it is similar to gaussian elimination expect that the entries both above and below each pivot are targeted
GIVEN- equations are given
10x + y + z=12
2x +2y +10z=14
2x+10y +z =13
FIND- value of x y and z
SOLUTION- above equations can be written as
A X. = B
[10 1 1. [x [12
2 10 1. y. 13
2 2 10]. z] 14]
A= co efficient matrix
B = constants
X= unknown variables
the augmented matrix can be written as
A B = [ 10. 1. 1. 12
2. 10. 1. 13
2. 2. 10 14]
=. [ 10. 1. 1. 12. R2 = R1 -5R2
0. -49. -4. -53. R3 = R1 - R3
0. -9. -49. -58].
= [. 490. 0. 45. 535. R1 = 49 R1 + R2
0. -49. -4. -53. R3 = R2-49R3
0. 0. 2365. 2365]
=. [. 1158850. 0. 0. 1158850
0. -115885. 0. -115885
0. 0. 2365. 2365]
R1 = 2365 R1 -45 R3
R2 = 2365 R2 + 4 R3
=. [. 1. 0. 0. 1
0. 1. 0. 1
0. 0. 1. 1 ]
R1 = R1 / 1158850. R2= R2 / 115885. R3 = R3/ 2365
by substitution
x= 1. y = 1. Z = 1