Math, asked by sanvi518, 15 days ago

solve the following by substitution method :- i) 3x -5y =19 , -7x + 3y = -1​

Answers

Answered by BrainlyTwinklingstar
4

Answer

\sf \dashrightarrow 3x - 5y = 19 \: \: --- (i)

\sf \dashrightarrow -7x + 3y = -1 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 3x - 5y = 19

\sf \dashrightarrow 3x = 19 + 5y

\sf \dashrightarrow x = \dfrac{19 + 5y}{3}

Now, we can find the value of y by second equation.

\sf \dashrightarrow -7x + 3y = -1

\sf \dashrightarrow -7 \bigg( \dfrac{19 + 5y}{3} \bigg) + 3y = -1

\sf \dashrightarrow \dfrac{-133 + (-35y)}{3} + 3y = -1

\sf \dashrightarrow \dfrac{-133 - 35y}{3} + 3y = -1

\sf \dashrightarrow \dfrac{-133 - 35y + 9y}{3} = -1

\sf \dashrightarrow \dfrac{-133 - 26y}{3} = -1

\sf \dashrightarrow -133 - 26y = -1 \times 3

\sf \dashrightarrow -133 - 26y = -3

\sf \dashrightarrow -26y = -3 + 133

\sf \dashrightarrow -26y = 130

\sf \dashrightarrow y = \dfrac{130}{-26}

\sf \dashrightarrow y = -5

Now, let's find the value of x by first equation.

\sf \dashrightarrow 3x - 5y = 19

\sf \dashrightarrow 3x - 5(-5) = 19

\sf \dashrightarrow 3x - (-25) = 19

\sf \dashrightarrow 3x + 25 = 19

\sf \dashrightarrow 3x = 19 - 25

\sf \dashrightarrow 3x = -6

\sf \dashrightarrow x = \dfrac{-6}{3}

\sf \dashrightarrow x = -2

Hence, the values of x and y are -2 and -5 respectively.

Similar questions