solve the following congruence
a) 17x=29(mod.37)
[= this is congruency symbol I coudnt type the symbol so kept =]
Answers
We're given to solve the following congruence.
Then let,
then each side is congruent to each other modulo the least coefficient (ignoring constant term) other than 1 there. Here it's 17.
We see,
Then (2) becomes,
We repeat the same process until we get any of the coefficient as 1.
Let,
then we have,
We see,
Then (4) becomes,
Let,
then we have,
We see,
Then (6) becomes,
It means is any multiple of 2. Here the coefficient is 1 so end up with here.
Let,
Then (5) becomes,
Then (3) becomes,
Then (1) becomes,
This is the solution to our congruence.
Answer:
We're given to solve the following congruence.
\longrightarrow17x\equiv29\pmod{37}⟶17x≡29(mod37)
Then let,
\longrightarrow17x=29+37a,\quad a\in\mathbb{Z}\quad\quad\dots(1)⟶17x=29+37a,a∈Z…(1)
then each side is congruent to each other modulo the least coefficient (ignoring constant term) other than 1 there. Here it's 17.
\longrightarrow17x\equiv29+37a\pmod{17}\quad\quad\dots(2)⟶17x≡29+37a(mod17)…(2)
We see,
17\equiv0\pmod{17}17≡0(mod17)
29\equiv12\pmod{17}29≡12(mod17)
37\equiv3\pmod{17}37≡3(mod17)
Then (2) becomes,
\longrightarrow0\equiv12+3a\pmod{17}⟶0≡12+3a(mod17)
We repeat the same process until we get any of the coefficient as 1.
Let,
\longrightarrow0=12+3a+17b,\quad b\in\mathbb{Z}\quad\quad\dots(3)⟶0=12+3a+17b,b∈Z…(3)
then we have,
\longrightarrow0\equiv12+3a+17b\pmod{3}\quad\quad\dots(4)⟶0≡12+3a+17b(mod3)…(4)
We see,
12\equiv0\pmod{3}12≡0(mod3)
3\equiv0\pmod{3}3≡0(mod3)
17\equiv2\pmod{3}17≡2(mod3)
Then (4) becomes,
\longrightarrow0\equiv2b\pmod{3}⟶0≡2b(mod3)
Let,
\longrightarrow0=2b+3c,\quad c\in\mathbb{Z}\quad\quad\dots(5)⟶0=2b+3c,c∈Z…(5)
then we have,
\longrightarrow0\equiv2b+3c\pmod{2}\quad\quad\dots(6)⟶0≡2b+3c(mod2)…(6)
We see,
2\equiv0\pmod{2}2≡0(mod2)
3\equiv1\pmod{2}3≡1(mod2)
Then (6) becomes,
\longrightarrow c\equiv0\pmod{2}⟶c≡0(mod2)
It means cc is any multiple of 2. Here the coefficient is 1 so end up with here.
Let,
c=2k,\quad k\in\mathbb{Z}c=2k,k∈Z
Then (5) becomes,
\longrightarrow0=2b+3(2k)⟶0=2b+3(2k)
\longrightarrow0=2b+6k⟶0=2b+6k
\longrightarrow b=-3k⟶b=−3k
Then (3) becomes,
\longrightarrow0=12+3a+17(-3k)⟶0=12+3a+17(−3k)
\longrightarrow0=12+3a-51k⟶0=12+3a−51k
\longrightarrow a=17k-4⟶a=17k−4
Then (1) becomes,
\longrightarrow17x=29+37(17k-4)⟶17x=29+37(17k−4)
\longrightarrow17x=29+37\cdot17k-37\cdot4⟶17x=29+37⋅17k−37⋅4
\longrightarrow17x=37\cdot17k-119⟶17x=37⋅17k−119
\longrightarrow\underline{\underline{x=37k-7}}⟶
x=37k−7
This is the solution to our congruence.
Step-by-step explanation:
mark me as branlinst