Math, asked by Anonymous, 5 months ago

Solve the following differential equation :-


  \longrightarrow \bf{ \cos {}^{2} x \frac{DY}{DX}  + y =  \tan \: x}

Answers

Answered by Anonymous
148

\huge\mathfrak{\bf{\underline{\underline{Question \ :}}}}

  \longrightarrow\bf{ \cos {}^{2} x \frac{DY}{DX} + y = \tan \: x}

\huge\mathfrak{\bf{\underline{\underline{\blue{Answer \ :}}}}}

 \implies \:  \mathtt{ \frac{dy}{dx}  + (sec^{2} x)y = tanx. {sec}^{2} x}  \\

\implies \:  \mathtt{P =  {sec}^{2}x \:  \:  \:  \:  \:  \:  \:  \:  \:  Q =  {sec}^{2}x.tanx }

\implies \:   \mathtt{If =  \:    \: {e}^{ \int \: (P \: dx)} } = \:  \:   \mathtt{ {e}^{ \int \:(  {sec}^{2}x \: dx )} }

\implies \: \mathtt{ Y(If) =  \int{Q(If)dx + C}}

\implies \:  \mathtt{Y. {e}^{tanx} =  \int{tanx . {sec}^{2}x. {e}^{tanx}dx  }}

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: \underline{\underline{Put \:  \:  \:  \mathtt{t = tanx}}}

 \implies \:  \mathtt{Y. {e}^{tanx}  = \mathtt{  \int{t. {e}^{t} dt + C}}}   \:  \:  \: ..... \mathsf{LIATE \: Rule}

\implies \:  \mathtt{Y. {e}^{tanx} = t. {e}^{t}  - 1( {e}^{t} ) + C}

\implies \:  \mathtt{Y. {e}^{tanx} = tanx. {e}^{tanx} -  {e}^{tanx}  + C }

 \mathfrak{Answer}:- \: \boxed{  \mathtt \blue{Y. {e}^{tanx} =  {e}^{tanx} (tanx - 1) +C }} \\

Answered by xXitzMissUniqueXx
7

Step-by-step explanation:

i \: hope \: itz \: help \:  \: uh

Attachments:
Similar questions