Math, asked by ItsSayanSaha2, 9 hours ago

❌❌❌Solve the following Differential Equation:- ❌❌❌
  xy .\frac{dy}{dx}  -  {y}^{2}  =  {(x + y)}^{2} .  {e}^{ \frac{ - y}{x} }

Answers

Answered by mathdude500
6

 \large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:xy\dfrac{dy}{dx} - {y}^{2} = {(x + y)}^{2} \bigg({e}\bigg)^{ \dfrac{ - y}{x} }

can be rewritten as

\rm :\longmapsto\:xy\dfrac{dy}{dx}  = {(x + y)}^{2} \bigg({e}\bigg)^{ \dfrac{ - y}{x} } +  {y}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{{(x + y)}^{2} \bigg({e}\bigg)^{ \dfrac{ - y}{x} } +  {y}^{2}}{xy}

Since, degree of each term of numerator and denominator is same, so its a homogeneous differential equation.

So, we substitute

\red{\rm :\longmapsto\:y = vx}

So, above expression can be rewritten as

\rm :\longmapsto\:\dfrac{d}{dx}(vx) = \dfrac{{(x + vx)}^{2} \bigg({e}\bigg)^{ \dfrac{ - vx}{x} } +  {(vx)}^{2}}{x(vx)}

\rm :\longmapsto\:v\dfrac{d}{dx}x + x\dfrac{d}{dx}v = \dfrac{ {x}^{2} {(1 + v)}^{2}  {e}^{ - v}  +  {x}^{2}  {v}^{2} }{ {vx}^{2} }

\rm :\longmapsto\:v + x\dfrac{dv}{dx} = \dfrac{ {x}^{2} \bigg[{(1 + v)}^{2}  {e}^{ - v}+{v}^{2} \bigg]}{ {vx}^{2} }

\rm :\longmapsto\:v + x\dfrac{dv}{dx} = \dfrac{ {(1 + v)}^{2}  {e}^{ - v}+{v}^{2} }{ v}

\rm :\longmapsto\:v + x\dfrac{dv}{dx} = \dfrac{ {(1 + v)}^{2}  {e}^{ - v}}{ v}  + v

\rm :\longmapsto\:x\dfrac{dv}{dx} = \dfrac{ {(1 + v)}^{2}  {e}^{ - v}}{ v}

On separating the variables, we get

\rm :\longmapsto\:\dfrac{v{e}^{v}}{ {(v + 1)}^{2} } \: dv \:  =  \: \dfrac{dx}{x}

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{v{e}^{v}}{ {(v + 1)}^{2} } \: dv \:  =  \: \displaystyle\int\rm \dfrac{dx}{x}

can be rewritten as

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{(v + 1 - 1){e}^{v}}{ {(v + 1)}^{2} } \: dv \:  =  \: logx + c

\rm :\longmapsto\:\displaystyle\int\rm \bigg[\dfrac{v + 1}{ {(v + 1)}^{2} } - \dfrac{1}{ {(v + 1)}^{2} }  \bigg]{e}^{v} \: dx = logx + c

\rm :\longmapsto\:\displaystyle\int\rm \bigg[\dfrac{1}{ {(v + 1)} } - \dfrac{1}{ {(v + 1)}^{2} }  \bigg]{e}^{v} \: dx = logx + c

We know,

\boxed{\tt{ \dfrac{d}{dx} \dfrac{1}{x} =  -  \dfrac{1}{ {x}^{2} }}}

and

\boxed{\tt{ \displaystyle\int\rm {e}^{x}\bigg[f(x) + f'(x)\bigg]dx = {e}^{x} \: f(x) + c}}

So, using this, we get

\rm :\longmapsto\:{e}^{v} \times \dfrac{1}{v + 1}  = logx + c

\rm :\longmapsto\: \dfrac{{e}^{v}}{v + 1}  = logx + c

\rm :\longmapsto\: \dfrac{{\bigg(e\bigg)}^{\dfrac{y}{x} }}{\dfrac{y}{x}  + 1}  = logx + c

\rm :\longmapsto\: \dfrac{{\bigg(e\bigg)}^{\dfrac{y}{x} }}{\dfrac{y + x}{x}}  = logx + c

\rm :\longmapsto\: \dfrac{x{\bigg(e\bigg)}^{\dfrac{y}{x} }}{y + x}  = logx + c

Similar questions