Math, asked by rehmat001, 7 days ago

Solve the following differential equation

( y  {}^{2}  e {}^{xy {}^{2} }  + 4x { }^{3} )dx  + (2xye {}^{xy}  {}^{2}  - 3y {}^{2} )dy = 0

Answers

Answered by sohani128kumari
0

Answer:

(y

2

e

xy

2

+4x

3

)dx+(2xye

xy

2

−3y

2

)dy=0

y

2

1

dx

dy

+

y

1

=2x

\ -\frac{1}{y^2} \frac{dy}{dx}-\frac{1}{y}=-2x −

y

2

1

dx

dy

y

1

=−2x

v(x)=\frac{1}{y(x)}, \ \frac{dv}{dx}=-\frac{1}{y^2(x)}\frac{dy}{dx}v(x)=

y(x)

1

,

dx

dv

=−

y

2

(x)

1

dx

dy

−v=−2x

Multiply by e^{-x}e

−x

both sides of equation:

e^{-x}\frac{dv}{dx} -e^{-x}v=-2xe^{-x}e

−x

dx

dv

−e

−x

v=−2xe

−x

e^{-x}\frac{dv}{dx} +v\frac{d}{dx}(e^{-x})=-2xe^{-x}e

−x

dx

dv

+v

dx

d

(e

−x

)=−2xe

−x

\frac{d}{dx}(ve^{-x})=-2xe^{-x}

dx

d

(ve

−x

)=−2xe

−x

ve^{-x}=\int (-2xe^{-x})dx=2xe^{-x}+2e^{-x}+Cve

−x

=∫(−2xe

−x

)dx=2xe

−x

+2e

−x

+C

Return to y(x):y(x):

\frac{1}{y}e^{-x}= 2xe^{-x}+2e^{-x}+C

y

1

e

−x

=2xe

−x

+2e

−x

+C

y=\frac{e^{-x}}{2xe^{-x}+2e^{-x}+C}=\frac{1}{2x+2+Ce^{x}}y=

2xe

−x

+2e

−x

+C

e

−x

=

2x+2+Ce

x

1

Answer: y(x)=\frac{1}{Ce^x+2(x+1)}y(x)=

Ce

x

+2(x+1)

1

1.2) (y^2e^{xy^2}+4x^3)dx+(2xye^{xy^2}-3y^2)dy=01.2)(y

2

e

xy

2

+4x

3

)dx+(2xye

xy

2

−3y

2

)dy=0

P(x,y)=y^2e^{xy^2}+4x^3, \ \ Q(x,y)=2xye^{xy^2}-3y^2P(x,y)=y

2

e

xy

2

+4x

3

, Q(x,y)=2xye

xy

2

−3y

2

\frac{\partial P(x,y)}{\partial y} =\frac{\partial Q(x,y)}{\partial x}=2ye^{xy^2}+2xy^3e^{xy^2}

∂y

∂P(x,y)

=

∂x

∂Q(x,y)

=2ye

xy

2

+2xy

3

e

xy

2

So, we will find function f(x,y):f(x,y):

\frac{\partial f(x,y)}{\partial x}=y^2e^{xy^2}+4x^3, \ \ \frac{\partial f(x,y) }{\partial y}=2xye^{xy^2}-3y^2

∂x

∂f(x,y)

=y

2

e

xy

2

+4x

3

,

∂y

∂f(x,y)

=2xye

xy

2

−3y

2

f(x,y)=\int (y^2e^{xy^2}+4x^3)dx= e^{xy^2}+x^4+\phi (y)f(x,y)=∫(y

2

e

xy

2

+4x

3

)dx=e

xy

2

+x

4

+ϕ(y)

f(x,y)=\int (2xye^{xy^2}-3y^2)dy =e^{xy^2} -y^3+\psi (x)f(x,y)=∫(2xye

xy

2

−3y

2

)dy=e

xy

2

−y

3

+ψ(x)

f(x,y)=e^{xy^2}+x^4-y^3f(x,y)=e

xy

2

+x

4

−y

3

\frac{\partial f(x,y)}{\partial x} dx+\frac{\partial f(x,y)}{\partial y} dy=0 \ \Rightarrow f(x,y)\equiv C

∂x

∂f(x,y)

dx+

∂y

∂f(x,y)

dy=0 ⇒f(x,y)≡C

Answer: e^{xy^2(x)}+x^4-y^3(x)=Ce

xy

2

(x)

+x

4

−y

3

(x)=C

Similar questions