Math, asked by Anonymous, 16 days ago

Solve the following
Differentiate w.r.t. x:
1. ㏒(x + √(x² + a²)
2.㏒(√(x-a) + √(x-b) )

Answers

Answered by AllenGPhilip
15

Answer:

Step-by-step explanation:

1. log (x + \sqrt{x^2 + a^2})

Solution:

y = log (x + \sqrt{x^2 + a^2})

\frac{dy}{dx} = \frac{1}{x + \sqrt{(x^2+a^2)} } * 1+\frac{1}{2\sqrt{(x^2+a^2)} }* 2x

= \frac{1}{(x + \sqrt{(x^2 + a^2)} } + \frac{x}{(x+ \sqrt{(x^2+a^2)}\sqrt{x^2+a^2}  }

= \frac{x \sqrt{(x^2+a^2)} }{(x + \sqrt{(x^2 + a^2)} \sqrt{(x^2+a^2)}  }

= \frac{1}{\sqrt{(x^2+a^2)} }

Derivative of log (x + \sqrt{x^2 + a^2}) is \frac{1}{\sqrt{(x^2+a^2)} }

-----------------------------------------

Formula used

\frac{d}{dx}(log x) = \frac{1}{x}

\frac{d}{dx}(\sqrt{x} ) = \frac{1}{2\sqrt{x} }

-----------------------------------------

2. log(\sqrt{(x-a)} + \sqrt{(x - b)}

\frac{d}{dx}  = \frac{1}{\sqrt{(x-a)}+\sqrt{(x-b)}  } * \frac{1}{2\sqrt{(x- a)} } +\frac{1}{2\sqrt{x} (x-b)}

= \frac{\sqrt{(x}-b) +\sqrt{(x-a)} }{\sqrt{(x-a)}+\sqrt{(x-b)}2\sqrt{(x-a)}\sqrt{(x-b)}    }

= \frac{1}{2\sqrt{(x-a)}\sqrt{(x-b)}  }

Derivative of log(\sqrt{(x-a)} + \sqrt{(x - b)} is = \frac{1}{2\sqrt{(x-a)}\sqrt{(x-b)}  }

-----------------------------------------

Formula used

\frac{d}{dx}(log x) = \frac{1}{x}

-----------------------------------------

More details

  1. f(x) = f'(x)
  2. x^n = nx^{n-1}
  3. e^{ax} = ae^{ax}
  4. ㏒ x = \frac{1}{x}
  5. Constant = 0
  6. \sqrt{x} = \frac{1}{2\sqrt{x} }

Similar questions