Math, asked by guptaprincess029, 4 hours ago

Solve the following

dy/dx=(1-3y-3x) /(1+x+y)​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 - 3y - 3x}{1 + x + y}

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 - 3(y + x)}{1 + x + y}

Now, we Substitute

 \red{\rm :\longmapsto\:y + x = z}

\rm :\longmapsto\:\dfrac{d}{dx}y + \dfrac{d}{dx}x = \dfrac{d}{dx}z

\rm :\longmapsto\:\dfrac{dy}{dx} + 1 = \dfrac{dz}{dx}

 \red{\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{dz}{dx} - 1}

On substituting all these values in above differential equation, we get

\rm :\longmapsto\: \dfrac{dz}{dx} - 1 = \dfrac{1 - 3z}{1 + z}

\rm :\longmapsto\: \dfrac{dz}{dx} = \dfrac{1 - 3z}{1 + z}  + 1

\rm :\longmapsto\: \dfrac{dz}{dx} = \dfrac{1 - 3z + 1 + z}{1 + z}

\rm :\longmapsto\: \dfrac{dz}{dx} = \dfrac{2 - 2z}{1 + z}

\rm :\longmapsto\: \dfrac{dz}{dx} = \dfrac{2(1 - z)}{1 + z}

On separating the variables, we get

\rm :\longmapsto\:\dfrac{z + 1}{1 - z}dz = 2dx

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int \dfrac{z + 1}{1 - z}dz = \displaystyle\int 2dx

\rm :\longmapsto\: - \displaystyle\int \dfrac{z + 1}{z - 1}dz = 2x + c

\rm :\longmapsto\: - \displaystyle\int \dfrac{z - 1 + 2}{z - 1}dz = 2x + c

\rm :\longmapsto\: - \displaystyle\int\bigg[1 +  \dfrac{2}{z - 1}\bigg]dz = 2x + c

\rm :\longmapsto\: - (z + log |z - 1|)  = 2x + c

\rm :\longmapsto\: - z  - log |z - 1|  = 2x + c

\rm :\longmapsto\: - (x + y)  - log |x + y - 1|  = 2x + c

\rm :\longmapsto\: - x  -  y  - log |x + y - 1|  = 2x + c

\rm :\longmapsto\: 3x + y  +  log |x + y - 1|  =  - c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \displaystyle\int  {x}^{n} =   \frac{ {x}^{n + 1} }{n + 1}  + c}}

\boxed{\tt{ \displaystyle\int  \frac{1}{x}  = log |x| +  c}}

\boxed{\tt{ \displaystyle\int kdx = kx + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions