Math, asked by dikshakumaridav135, 3 months ago

solve the
following equation:
1/x - 1/x-2 =3​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: Solve : \: \dfrac{1}{x}  - \dfrac{1}{x - 2}  = 3

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:\dfrac{1}{x}  - \dfrac{1}{x - 2}  = 3

\rm :\longmapsto\: \dfrac{ \cancel{x} - 2 -  \cancel{x}}{x(x - 2)}  = 3

\rm :\longmapsto\: \dfrac{  - 2 }{x(x - 2)}  = 3

\rm :\longmapsto\: - 2 = 3x(x - 2)

\rm :\longmapsto\: - 2 = 3 {x}^{2}  - 6x

\rm :\longmapsto\: {3x}^{2}  - 6x + 2 = 0

On comparing with ax²+ bx + c = 0

we get

  • a = 3

  • b = - 6

  • c = 2

Now,

We know that

The roots of the quadratic equation ax²+ bx + c = 0 using quadratic formula is given by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

So, on substituting the values of a, b and c, we get

\rm :\longmapsto\:x = \dfrac{ - ( - 6) \:  \pm \:  \sqrt{ {( - 6)}^{2} - 4 \times 2 \times 3 } }{2 \times 3}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \:  \sqrt{36 - 24} }{6}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \:  \sqrt{12} }{6}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \:  \sqrt{2 \times 2 \times 3} }{6}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \: 2 \sqrt{3} }{6}

\rm :\longmapsto\:x = \dfrac{3 \:  \pm \:  \sqrt{3} }{3}

\bf\implies \:x = \dfrac{3 +  \sqrt{3} }{3}  \:  \: or \:  \: \dfrac{3 -  \sqrt{3} }{3}

Additional Information:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions