Math, asked by arvindkumar953299015, 4 months ago

solve the following
equation​

Attachments:

Answers

Answered by tummakeerthana19
0

Answer:

2p+6/7=1/3-p

2p+1p=1/3 -6/7

3p=7-18/21

3p=-11/21

p=-11/21 ×1/3

p=-11/63

hope it helps you and don't forget to follow mè

Answered by Flaunt
154

Question

 \sf \large 2p +  \dfrac{6}{7}  =  \dfrac{1}{3}  - p

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto2p +  \dfrac{6}{7}  =  \dfrac{1}{3}  - p

\sf \longmapsto \dfrac{14p + 6}{7}  =  \dfrac{1 - 3p}{3}

Now,cross multiply to both sides:

\sf \longmapsto3(14p + 6) = 7(1 - 3p)

=>expanding the terms and removing brackets

=>3×14p+3×6=7×1+7×-3p

\sf \longmapsto42p + 21p = 7 - 18

\sf \longmapsto63p =  - 11

\sf \longmapsto \: p =   - \dfrac{11}{63}

Check:

\sf \longmapsto2p +  \dfrac{6}{7}  =  \dfrac{1}{3}  - p

\sf  \large\longmapsto2 \times  -  \frac{11}{63}  +  \frac{6}{7}  =  \frac{1}{3}  - ( -  \frac{11}{63} )

\sf \longmapsto -  \dfrac{22}{63}  +  \dfrac{6}{7}  =  \dfrac{1}{3}  +  \dfrac{11}{63}

\sf \longmapsto \dfrac{ - 22 + 54}{63}  =  \dfrac{21 + 11}{63}

\sf \longmapsto \dfrac{32}{63}  =  \dfrac{32}{63}

Since,LHS =RHS ( verified)

Similar questions