solve the following equation and find all the possible values of x.
6(x^2 +1/x^2)-25(x-1/x)+ 12= 0
Answers
Answered by
1
Step-by-step explanation:
Given equation
6(x2 + 1/x2) – 25(x – 1/x) + 12 = 0
Put x – 1/x = y, squaring (x – 1/x)2 = y2
⇒ x2 + 1/x2 – 2 = y2
⇒ x2 + 1/x2 = y2 + 2
Now, given equation becomes
6(y2 + 2) – 25y + 12 = 0
⇒ 6y2 + 12 – 25y + 12 = 0
⇒ 6y2 – 25y + 24 = 0
⇒ 6y2 - 16y - 9y + 24 = 0
⇒ 2y(3y – 8) – 3(3y – 8) = 0
⇒ (3y – 8)(2y – 3) = 0
⇒ 3y – 8 = 0 or 2y – 3 = 0
⇒ 3y = 8 or 2y = 3
⇒ 3y = 8 or 2y = 3
⇒ y = 8/3 or y = 3/2
But x – 1/x = y
Similar questions