Math, asked by pnph59947, 8 months ago

solve the following equation and find the value of x

(x-3)(2x-5)= 2x^2​

Answers

Answered by somyakumari118
1

Answer:

The value of x = 15/11

Step-by-step explanation:

(x- 3)(2x-5) = 2x^2

= 2x(x-3)-5(x+3) = 2x^2

= 2x^2-6x-5x+15 = 2x^2

= -11x = -15

= x. = 15/11

plz Mark me as brainliest and like my answers

Answered by Anonymous
3

 \huge {\bf{ {Answer : - }}}

 :  \implies  \tt(x - 3)(2x - 5) = 2 {x}^{2}  \\  \\    \red\bigstar \sf \:  \: By \: distributive \: property,

  \tt:  \implies \: 2 {x}^{2}  - 5x - 6x  + 15 = 2 {x}^{2}  \\  \\  \tt :  \implies2 {x}^{2}  - 11x + 15 = 2 {x}^{2}  \\  \\   \tt:  \implies 2 {x}^{2}  - 11x + 15  - 2 {x}^{2} = 0 \\  \\   \tt:  \implies \:  - 11x + 15 = 0 \\  \\  \tt : \implies \:  - 11x =  - 15 \\  \\  \tt : \implies \cancel{- } \: 11x =  \cancel{ - } \: 15 \\  \\   :  \implies \blue \bigstar \:  \underline{\boxed{ \tt{ x =  \dfrac{15}{11} }}}  \:

  \huge {\bf {{verification : - }}}

 \red \bigstar \sf \: By \: substituting \: the \: x \: value \: in \: the \: equation , \:

   \tt :  \implies \bigg( \dfrac{15}{11}  - 3 \bigg) \bigg(2 \bigg[  \dfrac{15}{11}  \bigg] - 5 \bigg) = 2 \bigg({ \dfrac{15}{11}  \bigg) }^{2}  \\  \\  \tt  : \implies \bigg( \frac{15 - 33}{11}  \bigg) \bigg( \frac{30}{11}  - 5 \bigg) = 2 \bigg( \frac{225}{121}  \bigg) \\  \\  \tt  : \implies   \bigg( -  \frac{18}{11}  \bigg) \bigg( \frac{30 - 55}{11} \bigg ) =  \bigg( \frac{ 2 \times225 }{121} \bigg) \\  \\  \tt :  \implies \bigg( -  \frac{18}{11}  \bigg) \bigg( -  \frac{25}{11}  \bigg) =  \bigg( \frac{450}{121}  \bigg) \\  \\  \tt  : \implies \bigg( \frac{ (- 18)  (- 25)}{(11)(11)}  \bigg) =   \bigg(\frac{450}{121} \bigg)  \\  \\ \tt :   \implies \bigg( \frac{450}{121}  \bigg) =  \bigg( \frac{450}{121}  \bigg) \\  \\  \sf  : \implies \: LHS = RHS   \\

 \therefore\</u><u>l</u><u>a</u><u>r</u><u>g</u><u>e</u><u> </u><u>{</u><u> \sf </u><u>{</u><u>T</u><u>h</u><u>e</u><u> </u><u>\</u><u>:</u><u>V</u><u>a</u><u>l</u><u>u</u><u>e</u><u>\</u><u>:</u><u>of \: x \: is \:  \frac{15}{11}</u><u>}</u><u>}</u><u>

 \huge \:  \dag  \:   {\underline {\sf {</u><u>H</u><u>ence \: </u><u>V</u><u>erified}}}

Similar questions