Math, asked by vermafatebhadur62, 9 months ago

solve the following equation and verify your answer 3k+5/4k-3=4/9​

Answers

Answered by Sudhir1188
38

ANSWER:

  • Value of k = -57/11

GIVEN:

 \implies \:  \dfrac{3k + 5}{4k - 3}   =  \dfrac{4}{9}   \\  \\

TO FIND:

  • Value of 'k'.

SOLUTION:

 \implies \:  \dfrac{3k + 5}{4k - 3}   =  \dfrac{4}{9}   \\  \\  \implies \: 9(3k + 5) = 4(4k - 3) \\   \implies \: 27k + 45 = 16k - 12 \\  \implies \: 27k - 16k =  - 45 - 12 \\  \implies \: 11k =  - 57 \\  \implies \: k \:  =   \frac{ - 57}{11}

Putting k = -57/11 in LHS:

 =  \dfrac{3( \dfrac{ - 57}{11}) + 5 }{4( \dfrac{ - 57}{11} ) - 3}   \\  \\   =  \dfrac{ \dfrac{ - 171}{11}  + 5}{ \dfrac{ - 228}{11} - 3 } \\  \\   =  \frac{ \dfrac{ - 116}{11} }{ \dfrac{ - 261}{11} }  \\  \\  =  \frac{116}{261}      \\  \\  =  \dfrac{116 \div 29}{261 \div 29}  \\  \\  = \dfrac{4}{9}

LHS = RHS

Answered by MisterIncredible
15

\huge{\longrightarrow{\text{ANSWER }}}{\longleftarrow}

Given :-

\large{\tt{ \dfrac{ 3k + 5 }{ 4k - 3  } = \dfrac{4}{9} }}

Required to find :-

  • Value of k

  • Verification of the answer

Concept used :-

Method used in solving linear equations

Solution :-

Given :-

\large{\tt{ \dfrac{ 3k + 5 }{ 4k - 3  } = \dfrac{4}{9} }}

we need to find the value of k and verification of the answer

so

\large{\tt{ \dfrac{ 3k + 5 }{ 4k - 3  } = \dfrac{4}{9} }}

Cross multiplication on both sides

\longrightarrow{\tt{9 ( 3k + 5 ) = 4 ( 4k - 3 ) }}

\longrightarrow{\tt{ 27k + 45 = 16k - 12 }}

\longrightarrow{\tt{ 27k - 16k = - 12 - 45 }}

\longrightarrow{\tt{ 11k = - 57 }}

\longrightarrow{\tt{ k = \dfrac{ -57 }{11 }}}

Hence

Value of k is - 57/11

Verification :-

Since we had find the value of k let's find whether it is correct or wrong

So,

\large{\tt{ \dfrac{ 3k + 5 }{ 4k - 3  } = \dfrac{4}{9} }}

Here We need to substitute the value of k in L.H.S. part and the end resulting value should be equal to R.H.S. part .

If LHS = RHS then the value of k is correct

If , LHS ≠ RHS then the value of k is incorrect

\large{\longrightarrow{\tt{ \dfrac{ 3 ( \dfrac{ - 57 }{11 }) + 5 }{ 4 ( \dfrac{ - 57 }{11 } ) - 3 } = \dfrac{ 4 }{ 9 }}}}

\large{\longrightarrow{\tt{ \dfrac{ \dfrac{3}{1} \times \dfrac{-57}{11} + 5 }{ \dfrac{4}{1} \times  \dfrac{ - 57 }{11 } - 3 }  = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ \dfrac{ - 171 }{11} + 5 }{ \dfrac{ - 228 }{11 } - 3 } = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ \dfrac{ -171 }{11} + \dfrac{5 \times 11 }{1 \times 11 }}{ \dfrac{ - 228 }{11 } - \dfrac{3 \times 11 }{ 1 \times 11 }} = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ \dfrac{ -171 + 55}{11}}{ \dfrac{ -228 - 33}{11}} = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ \dfrac{ -116 }{11 }}{ \dfrac{ -261 }{11 }} = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ -116 }{11 } \div \dfrac{ -261 }{ 11 } = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ -116 }{11 } \times \dfrac{ 11 }{ -261 } = \dfrac{4}{9}}}}

11 , - ( minus sign ) gets cancelled on both numerator and denominator

\large{\longrightarrow{\tt{ \dfrac{ 116 }{ 261 }  = \dfrac{4}{9}}}}

\large{\longrightarrow{\tt{ \dfrac{ 29 ( 4 ) }{ 29 ( 9 ) } = \dfrac{4}{9}}}}

This is because

29 x 4 = 116

29 x 9 = 261

So , 29 gets cancelled in both numerator and denominator

\large{\implies{\red{\tt{ \dfrac{4}{9} = \dfrac{4}{9}}}}}

Therefore,

LHS = RHS

Hence value of " k " is correct .

Similar questions