solve the following equation by changing the independent variable (1 + x²)² y'' + 2x(1 + x²) y' + 4y = 0.
Answers
Answered by
3
We can solve this 2nd order ODE by substituting for the variable x.
(1+x²)² y'' + 2 x (1+x²) y' + 4 y = 0 ---- (1)
Let x = tan Ф, dФ/dx = cos²Ф , x = 0, when Ф = 0.
dy/dx = dy/dФ * dФ/dx = dy/dФ * cos²Ф ---(2)
d²y/dx² = d/dФ (dy/dФ * cos²Ф) * dФ/dx
= [ cos²Ф * d²y/dФ² - 2 cosФ sinФ* dy/dФ] * cos²Ф
= cos⁴Ф * d²y/dФ² - 2 cos³Ф sinФ * dy/dФ ---(3)
So (1) becomes:
d²y/dФ² - 2 tanФ dy/dФ + 2 tanФ sec²Ф *dy/dФ * cos²Ф + 4 y = 0
d²y/dФ² = - 4 y --- (4)
This is the equation of motion for SHM... with ω = √4 = 2
Let y = A sin ωФ = A Sin2Ф , Assuming Ф = 0 = Ф₀ for y = 0
If the initial conditions are different we can have : y = A sin (Ф+Ф₀).
x = tanФ So cos2Ф = (1-x²)/(1+x²), sin2Ф = 2x/(1+x²)
Solution: y = 2 A x /(1+x²) ---- (4)
We can also verify the solution by differentiating the above :
y' = (1-x²)/(1+x²) . y'' = (x² - 3) 2x /(1+x²)³
(1+x²)² y'' + 2 x (1+x²) y' + 4 y = 0 ---- (1)
Let x = tan Ф, dФ/dx = cos²Ф , x = 0, when Ф = 0.
dy/dx = dy/dФ * dФ/dx = dy/dФ * cos²Ф ---(2)
d²y/dx² = d/dФ (dy/dФ * cos²Ф) * dФ/dx
= [ cos²Ф * d²y/dФ² - 2 cosФ sinФ* dy/dФ] * cos²Ф
= cos⁴Ф * d²y/dФ² - 2 cos³Ф sinФ * dy/dФ ---(3)
So (1) becomes:
d²y/dФ² - 2 tanФ dy/dФ + 2 tanФ sec²Ф *dy/dФ * cos²Ф + 4 y = 0
d²y/dФ² = - 4 y --- (4)
This is the equation of motion for SHM... with ω = √4 = 2
Let y = A sin ωФ = A Sin2Ф , Assuming Ф = 0 = Ф₀ for y = 0
If the initial conditions are different we can have : y = A sin (Ф+Ф₀).
x = tanФ So cos2Ф = (1-x²)/(1+x²), sin2Ф = 2x/(1+x²)
Solution: y = 2 A x /(1+x²) ---- (4)
We can also verify the solution by differentiating the above :
y' = (1-x²)/(1+x²) . y'' = (x² - 3) 2x /(1+x²)³
kvnmurty:
I am answering still. wait..
Similar questions