Math, asked by RishabhRawat7, 1 month ago

Solve the following equation by elimination method.

3x+5y=7 and 11x=9 +13y.

• Only Quality Answers!!
• Spammers Stay Away!!.​​​

Answers

Answered by Anonymous
8

3x + 5y = 7....(i)

11x - 13y = 9....(ii)

Multiplying eqn. (i) by 13 and eqn. (ii) by 5, we have

\longrightarrow{\green{}} 39x + 65y = 91

\longrightarrow{\green{}} 55x - 65y = 45

-----------------------------------

\longrightarrow{\green{}} 94x = 136

\longrightarrow{\green{}} x =  \frac{136}{94} \\

\longrightarrow{\green{}} x =  \frac{68}{47}\\

Plugging the value of x in eqn. (i) gives us

\longrightarrow{\green{}} 3 \times  \frac{68}{47}  + 5y = 7\\

\longrightarrow{\green{}}  \frac{204}{47}  + 5y = 7\\

\longrightarrow{\green{}} 5y = 7 -  \frac{204}{47}\\

\longrightarrow{\green{}} 5y =  \frac{7 \times 47}{1 \times 47}  -  \frac{204}{47}\\

\longrightarrow{\green{}} 5y =  \frac{329 - 204}{47}\\

\longrightarrow{\green{}} 5y =  \frac{125}{47} \\

\longrightarrow{\green{}} y =  \frac{125}{5 \times 47} \\

\longrightarrow{\green{}} y =  \frac{25}{47} \\

Hence, \boxed{ x =  \frac{68}{47}    } and \boxed{ y =  \frac{25}{47}    }.

Similar questions