Math, asked by saleemkhan143m, 1 month ago

solve the following equation by reduction method x+y+z=2 x-2y+z=8 3x+y+z=4​

Answers

Answered by Mithalesh1602398
0

Answer:

x+y+z=2 x-2y+z=8 3x+y+z=4​ =x=1, y=-2, z=3.

Step-by-step explanation:

Step:1  Given:         x+y+z=2

                   x-2y+z=8

                   3x+y+z=4​

To find:

Solution of the given system by matrix inversion method

Step : 2  Solution:

The given system of equations can be written as

\left(\begin{array}{ccc}1 & 1 & 1 \\1 & -2 & 1 \\3 & 1 & 1\end{array}\right)\left(\begin{array}{l}x \\y \\z\end{array}\right)=\left(\begin{array}{l}2 \\8 \\4\end{array}\right)

This can be written as

A X=B

\Longrightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}

|A|=\left|\begin{array}{ccc}1 & 1 & 1 \\1 & -2 & 1 \\3 & 1 & 1\end{array}\right|

\begin{aligned}& |A|=1(-2-1)-1(1-3)+1(1+6) \\& |A|=-3-1(-2)+1(7) \\& |A|=-3+2+7=6\end{aligned}

\text { Cofactor matrix of } \mathrm{A}

=\left(\begin{array}{ccc}+(-2-1) & -(1-3) & +(1+6) \\-(1-1) & +(1-3) & -(1-3) \\+(1+2) & -(1-1) & +(-2-1)\end{array}\right)

=\left(\begin{array}{ccc}-3 & 2 & 7 \\0 & -2 & 2 \\3 & 0 & -3\end{array}\right)

adj A = (\text { Cofactor matrix })^{\top}

adj A = \left(\begin{array}{ccc}-3 & 0 & 3 \\2 & -2 & 0 \\7 & 2 & -3\end{array}\right)

\mathrm{A}^{-1}=\frac{1}{6}\left(\begin{array}{ccc}-3 & 0 & 3 \\2 & -2 & 0 \\7 & 2 & -3\end{array}\right)

Now,

X=A^{-1} B

\mathrm{X}=\frac{1}{6}\left(\begin{array}{ccc}-3 & 0 & 3 \\2 & -2 & 0 \\7 & 2 & -3\end{array}\right)\left(\begin{array}{l}2 \\8 \\4\end{array}\right)

X=\frac{1}{6}\left(\begin{array}{c}-6+0+12 \\4-16+0 \\14+16-12\end{array}\right)

X=\frac{1}{6}\left(\begin{array}{c}6 \\-12 \\18\end{array}\right)

\left(\begin{array}{l}x \\y \\z\end{array}\right)=\left(\begin{array}{c}1 \\-2 \\3\end{array}\right)

x=1, y=-2, z=3

Step : 3  Find more:

X + y + z = 6, 3x - y + 3z = 10, 5x + 5y - 4z = 3.

[Find A-¹ using adjoint method.]​

Step : 4 Solve be matrix inversion method

x-3y-8z+10=0

3x+y=4

2x+5y+6z=13​

To learn more about similar questions visit:

https://brainly.in/question/34735499?referrer=searchResults

https://brainly.in/question/12306701?referrer=searchResults

#SPJ3

Answered by tejasbhandari1814
0

Step-by-step explanati

Attachments:
Similar questions