Solve the following equation by the method of completing the square: 4√3x^2 + 5x - 2√3 = 0
Answers
Answered by
3
4√3x^2+8x-3x-2√3
4x(√3x+2)-√3(√3x+2)
(4x-√3) (√3x+2)
x=√3/4
and x=-2/√3
4x(√3x+2)-√3(√3x+2)
(4x-√3) (√3x+2)
x=√3/4
and x=-2/√3
Vareny:
you have solved by splitting middle term, not by completing the square
Answered by
2
hi mate,
=4√3x²+5x-2√3
=4√3x² + 8x - 3x - 2√3
=4x(√3x +2) - √3(√3x + 2)
=(4x - √3) ( √3x + 2)
⇒4x - √3 =0 or ⇒√3x
+2=0
⇒ x = √3/4 or ⇒ x= -2√3
4.4
p(x) = 4√3x² + 5x - 2√3
p(x) = 4√3x² + 8x - 3x - 2√3 ( SPLITTING THE MIDDLE TERM)
p(x) = 4x(√3x + 2 ) - √3 ( √3x + 2)
p(x) = ( √3x+2 ) ( 4x-√3 )
p(x) = 0
( √3x+2 ) ( 4x-√3 ) = 0
√3x+2 = 0 or 4x-√3 = 0
x = -2/√3 or, x = √3/4
VERIFICATION :-
Hence, the zeroes of p(x) are :
∝ = -2/√3 and β = √3/4
Now, ∝ + β = -2/√3 + √3/4
-8+3/4√3
-5/4√3
And
∝β = -2/√3 × √3/4
= -1`/2
Now, from equation :- ( 4√3x² + 5x - 2√3.)
a = 4√3
b = 5
c = -2√3
∝ + β = -b/a
⇒ -5/4√3
And
∝β = c/a
-2√3/4√3
⇒ -1/2
Similar questions