Math, asked by samiransaha001, 1 month ago

Solve the following equation. Check your result in each case x/2+x/4=1/8 the ans is 1/6​

Answers

Answered by TwilightShine
7

Answer -

  • The value of x is 1/6.

To find -

  • The value of "x" and check the result.

Step-by-step explanation -

 \implies\sf \dfrac{x}{2}  +  \dfrac{x}{4}  =  \dfrac{1}{8}

 \implies\sf \dfrac{(x \times 2) + (x \times 1)}{4}  =  \dfrac{1}{8}

 \implies\sf \dfrac{2x + x}{4}  =  \dfrac{1}{8}

 \implies\sf\dfrac{3x}{4}  =  \dfrac{1}{8}

 \implies\sf8 \: (3x) = 4 \: (1)

 \implies\sf24x = 4

 \implies\sf x =   \cancel{\dfrac{4}{24}}

 \implies\sf x =  \dfrac{1}{6}

-----------------------------------------------------------

V E R I F I C A T I O N -

  • To check our answer, let's substitute the value of "x" in the equation and see whether LHS = RHS.

 \\

LHS :

 \implies\rm \dfrac{x}{2}  +  \dfrac{x}{4}

 \implies \dfrac{ \frac{1}{6} }{2}  +  \dfrac{ \frac{1}{6} }{4}

 \implies \dfrac{1}{6}  \times  \dfrac{1}{2}  +  \dfrac{1}{6}  \times  \dfrac{1}{4}

 \implies \dfrac{1}{12}  +  \dfrac{1}{24}

 \implies \dfrac{(1 \times 2) + (1 \times 1)}{24}

 \implies\dfrac{2 + 1}{24}

 \implies \dfrac{3}{24}

  \implies \dfrac{1}{8}

 \\

RHS :

 \implies \dfrac{1}{8}

 \\

LHS = RHS.

Hence verified!!

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions