Solve the following equation for x: .
Answers
Answered by
0
Solution :
Let x = tanA ---- ( 1 )
=> A = tan^-1x ----- ( 2 )
=> 3sin^-1{ 2x/(1+x²)}
- 4cos^-1{(1-x²)/(1+x²)}
+ 2tan^-1{2x/(1-x²)} = π/3
=>3sin^-1{2tanA/(1+tan²A)}
- 4cos^-1{(1-tan²A)/(1+tan²A)}
+ 2tan^-1{2tanA/(1-tan²A)} = π/3
*****************************************
We know that ,
i ) sin2A = 2tanA/( 1 + tan² A )
ii ) cos2A = (1-tan²A)/(1+tan²A)
iii) tan2A = 2tanA/(1-tan²A)
***************************************
=> 3sin^-1{sin2A} - 4cos^-1(cos2A)
+ 2tan^-1(tan2A) = π/3
=> 2A = π/3
=> A = π/6
=> tan^-1 x = π/6 [ from ( 2 ) ]
=> x = tan ( π/6 )
=> x = 1/√3
••••
Let x = tanA ---- ( 1 )
=> A = tan^-1x ----- ( 2 )
=> 3sin^-1{ 2x/(1+x²)}
- 4cos^-1{(1-x²)/(1+x²)}
+ 2tan^-1{2x/(1-x²)} = π/3
=>3sin^-1{2tanA/(1+tan²A)}
- 4cos^-1{(1-tan²A)/(1+tan²A)}
+ 2tan^-1{2tanA/(1-tan²A)} = π/3
*****************************************
We know that ,
i ) sin2A = 2tanA/( 1 + tan² A )
ii ) cos2A = (1-tan²A)/(1+tan²A)
iii) tan2A = 2tanA/(1-tan²A)
***************************************
=> 3sin^-1{sin2A} - 4cos^-1(cos2A)
+ 2tan^-1(tan2A) = π/3
=> 2A = π/3
=> A = π/6
=> tan^-1 x = π/6 [ from ( 2 ) ]
=> x = tan ( π/6 )
=> x = 1/√3
••••
Answered by
0
HELLO DEAR,
We Know:-
2tanA/(1 + tan²A) = sin2A
(1 - tan²A)/(1 + tan²A) = cos2A
2tanA/(1 - tan²A) = tan2A
now,
let x = tanA
so,
.
=> 3sin-¹(2tanA)/(1 + tan²A) - 4cos-¹(1 - tan²A)/(1 + tan²A) + 2tan-¹(2tanA)/(1 - tan²A) = π/3
=> 3sin-¹(sin2A) - 4cos-¹(cos2A) + 2tan-¹(tan2A) = π/3
=> 3(2A) - 4(2A) + 2(2A) = π/3
=> 2A = π/3
=> A = π/6
therefore, x = tanA = tanπ\6
x = 1/√3
I HOPE IT'S HELP YOU DEAR,
THANKS
We Know:-
2tanA/(1 + tan²A) = sin2A
(1 - tan²A)/(1 + tan²A) = cos2A
2tanA/(1 - tan²A) = tan2A
now,
let x = tanA
so,
.
=> 3sin-¹(2tanA)/(1 + tan²A) - 4cos-¹(1 - tan²A)/(1 + tan²A) + 2tan-¹(2tanA)/(1 - tan²A) = π/3
=> 3sin-¹(sin2A) - 4cos-¹(cos2A) + 2tan-¹(tan2A) = π/3
=> 3(2A) - 4(2A) + 2(2A) = π/3
=> 2A = π/3
=> A = π/6
therefore, x = tanA = tanπ\6
x = 1/√3
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
English,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago