solve the following equation in two variable
Answers
Let the four consecutive natural numbers be x,x+1,x+2,x+3.
Given that product of four consecutive natural numbers is 840.
= > x * (x + 1) * (x + 2) * (x + 3) = 840
= > x^4 + 6x^3 + 11x^2 + 6x - 840 = 0
= > x^4 + 10x^3 + 51x^2 + 210x - 4x^3 - 40x^2 - 204x - 840 = 0
= > x(x^3 + 10x^2 + 51x + 210) - 4(x^3 + 10x^2 + 51x + 210) = 0
= > (x - 4)(x^3 + 10x^2 + 51x + 210) = 0
= > (x - 4) = 0, (x^3 + 10x^2 + 51x + 210) = 0[Neglect it as it is real and imaginary)
= > x - 4 = 0
= > x = 4.
---------------------------------------------------------------------------------------------------------------
1st number:
= > x + 1 = 5
= > x + 2 = 6
= > x + 3 = 7.
----------------------------------------------------------------------------------------------------------------
Therefore, the numbers are 4,5,6,7.
Hope this helps!