Math, asked by parijain20151071, 1 month ago

solve the following equation of the Simultaneous linear equations: x/3 + y/4 =4 ; 5x/6 - y/8=4​

Answers

Answered by Anonymous
78

\huge \rm {Answer:-}

__________________________________

\bf\orange{Given:-}

 \tt {\fbox {Equation\: 1,}}

\large \dashrightarrow \tt{\frac{x}{3}+\frac{y}{4}=4}

★"By Taking LCM",

\large \dashrightarrow \tt{\frac{4x+3y}{12}=4}

 \dashrightarrow \tt{4x+3y=4\times12}

 \dashrightarrow \tt{4x+3y=48}

__________________________________

 \tt {\fbox {Equation\: 2,}}

\large \dashrightarrow \tt{\frac{5x}{6}-\frac{y}{8}=4}

★"By Taking LCM",

\large \dashrightarrow \tt{\frac{5x(4)-y(3)}{24}=4}

\large \dashrightarrow \tt{\frac{20x-3y}{24}=4}

 \dashrightarrow \tt{20x-3y=4\times24}

 \dashrightarrow \tt{20x-3y=96}

__________________________________

★"As the co-efficients of 'y' are equal in the both equations but with contrasting signs,we can sum up the two equations".

\bf\blue{On\: Adding:-}

 \dashrightarrow \tt {4x+3y+20x-3y=48+96}

★"y" gets cancelled,so we get:-

 \dashrightarrow \tt {4x+20x=144}

 \dashrightarrow \tt {24x=144}

 \dashrightarrow \tt {x=\frac{144}{24}}

 \large \tt {\fbox{x=6}}

__________________________________

★"Substituting the value of 'x' in either of the equations gives the value of 'y' "

\bf\pink{Substituting\: X=6\: in\: eq- 1,}

 \dashrightarrow \tt{4(6)+3y=48}

 \dashrightarrow \tt{24+3y=48}

 \dashrightarrow \tt{3y=48-24}

 \dashrightarrow \tt{3y=24}

\large \dashrightarrow \tt{y=\frac{24}{3}}

 \large \tt {\fbox{y=8}}

__________________________________

\bf\purple{Thereupon,}

 \large \tt {\fbox{x=6\: and\:y=8}}

__________________________________

Answered by Anonymous
4

Answer:

hey mate :-

Step-by-step explanation:

On solving the both equations,we get

X value = 6 and y value =8

thank you,hope it helps you !

Similar questions