Math, asked by Anonymous, 4 months ago

Solve the following equation stepwise.

Give the accurate answer stepwise.​

Attachments:

Answers

Answered by spacelover123
46

Let's solve your equation step-by-step

\dfrac{x-1}{2} + \dfrac{x+2}{3} - \dfrac{x-3}{4} =1

Step 1: Simplify the equation.

\dfrac{x-1}{2} + \dfrac{x+2}{3} - \dfrac{x-3}{4} =1

\dfrac{1}{2}x - \dfrac{1}{2}  + \dfrac{1}{3}x + \dfrac{2}{3} - \dfrac{1}{4}x + \dfrac{3}{4}    = 1

Step 2: Combine like terms.

\dfrac{1}{2}x - \dfrac{1}{2}  + \dfrac{1}{3}x + \dfrac{2}{3} - \dfrac{1}{4}x + \dfrac{3}{4}    = 1

(\dfrac{1}{2}x   + \dfrac{1}{3}x- \dfrac{1}{4}x ) + (\dfrac{-1}{2} + \dfrac{2}{3} + \dfrac{3}{4}    )= 1

(\dfrac{1\times 6 }{2\times 6 }x   + \dfrac{1\times 4 }{3\times 4 }x- \dfrac{1\times 3 }{4\times 3 }x ) + (\dfrac{-1\times 6 }{2\times 6 } + \dfrac{2\times 4 }{3\times 4 } + \dfrac{3\times 3 }{4\times 3 }    )= 1

(\dfrac{6 }{12}x   + \dfrac{4 }{12 }x- \dfrac{3 }{12 }x ) + (\dfrac{-6 }{12 } + \dfrac{8}{12 } + \dfrac{9 }{12}    )= 1

(\dfrac{7}{12}x ) + (\dfrac{11}{12 }  )= 1

\dfrac{7}{12}x  + \dfrac{11}{12 }  = 1

Step 3: Subtract ¹¹/₁₂ from both sides of the equation.

\dfrac{7}{12}x  + \dfrac{11}{12 }  = 1

\dfrac{7}{12}x  + \dfrac{11}{12 } - \dfrac{11}{12}   = 1-\dfrac{11}{12}

\dfrac{7}{12}x   = \dfrac{12}{12} -\dfrac{11}{12}

\dfrac{7}{12}x   = \dfrac{1}{12}

Step 4: Multiply ¹²/₇ from both sides of the equation.

\dfrac{7}{12}x   = \dfrac{1}{12}

\dfrac{12}{7}\times \dfrac{7}{12}x   = \dfrac{12}{7}\times   \dfrac{1}{12}

x = \dfrac{1}{7}

______________________________

Verification for value of 'x'

\dfrac{x-1}{2} + \dfrac{x+2}{3} - \dfrac{x-3}{4} =1

\dfrac{\frac{1}{7} -1}{2} + \dfrac{\frac{1}{7} +2}{3} - \dfrac{\frac{1}{7} -3}{4} =1

\dfrac{\frac{1}{7} -\frac{7}{7} }{2} + \dfrac{\frac{1}{7} +\frac{14}{7} }{3} - \dfrac{\frac{1}{7} -\frac{21}{7} }{4} =1

\dfrac{-\frac{6}{7} }{2} +\dfrac{\frac{15}{7}  }{3} - \dfrac{-\frac{20}{7} }{4} =1

\dfrac{-6}{7} \times \dfrac{1}{2}  + \dfrac{15}{7}\times \dfrac{1}{3}  + \dfrac{20}{7}    \times \dfrac{1}{4}  = 1

\dfrac{-3}{7}+\dfrac{5}{7} +\dfrac{5}{7} = 1

\dfrac{7}{7} =1

1 = 1

∴ LHS = RHS

\bf \therefore x = \frac{1}{7}  \ in \ the \ equation \rightarrow  \dfrac{x-1}{2} + \dfrac{x+2}{3} - \dfrac{x-3}{4} =1

______________________________

Answered by itzbeyonder
69

Answer:

Question:-

=  &gt;  \frac{x - 1}{2}  +  \frac{x + 2}{3}  -  \frac{x - 3}{4 }  = 1</u></p><p></p><p><u>[tex]=  &gt;  \frac{x - 1}{2}  +  \frac{x + 2}{3}  -  \frac{x - 3}{4 }  = 1

refer \: the \: attachment \: for \: answer

Attachments:
Similar questions