Math, asked by kalpnavermasingh, 5 months ago

solve the following equation using cross multiplication method
1/x+1/3(5/3x-7/x) =-1​


kalpnavermasingh: bhej do
kalpnavermasingh: plz

Answers

Answered by LilBabe
85

Question

Solve the following equation using cross multiplication method

 \bf\boxed{ \frac{1}{x} +  \frac{1}{3} \: ( \frac{5}{3x} -  \frac{7}{x}) = ( - 1)}

Answer

 \bf{ \frac{1}{x} +  \frac{1}{3} \: ( \frac{5}{3x} -  \frac{7}{x}) = ( - 1)}

 \nrightarrow\bf{ \frac{1}{x} +  \frac{1}{3} \: (\frac{5x - 21x}{3x {}^{2}}) = ( - 1)}

 \nrightarrow\bf{ \frac{1}{x} +  \frac{1}{3} \: (\frac{ - 16x}{3x {}^{2}}) = ( - 1)}

 \nrightarrow\bf{ \frac{3 + x}{3x} \: (\frac{ - 16x}{3x {}^{2}}) = ( - 1)}

  \nrightarrow\bf{ \frac{3 + x}{3x} \:  \times \frac{ - 16x}{3x {}^{2}} = ( - 1)}

 \nrightarrow\bf{ \frac{3 + x}{3x} \:  \times \frac{ - 16 \cancel x}{3 \cancel x {}^{2}} = ( - 1)}

 \nrightarrow\bf{ \frac{3 + x}{3x} \:  \times \frac{ - 16 }{3x } = ( - 1)}

  \nrightarrow\bf{ \frac{(3 + x)( - 16)}{3x \times 3x} \:  = ( - 1)}

 \nrightarrow\bf{ \frac{( - 48 - 16x)}{6x {}^{2} } \:  = ( - 1)}

 \nrightarrow\bf{ - 48 - 16x = - 6x {}^{2} }

\nrightarrow\bf{6x {}^{2}- 48 - 16x =  0}


SuitableBoy: Awesome
Seafairy: Perfect answer :)
BankingDeer: can u give me thanks
SuitableBoy: Its Incorrect.. lol
Seafairy: lol Hehe
Similar questions