Solve the following equation using quadratic formula
Answers
Answered by
4
Hello,
Hello,
y²+14y-12=0
∆=14²-4•(-12)=196+48=244
y₁,₂=14± √∆/2=14±√244/2=14±2√61/2
then
y₁=14-2√61/2=2(7-√61)/2=7-√61
and
y₂=14+2√61/2=2(7+√61)/2=7+√61
therefore
y=7-√61 ,y=7+√61
Bye :-)
Hello,
y²+14y-12=0
∆=14²-4•(-12)=196+48=244
y₁,₂=14± √∆/2=14±√244/2=14±2√61/2
then
y₁=14-2√61/2=2(7-√61)/2=7-√61
and
y₂=14+2√61/2=2(7+√61)/2=7+√61
therefore
y=7-√61 ,y=7+√61
Bye :-)
Answered by
3
Given y^2 - 14y - 12 = 0.
a = 1, b = -14, c = -12.
For a quadratic equation of the form ax^2 + bx + c = 0 the solutions are
(1) -b + root b^2 - 4ac/2a.
= -(-14) + root (-14)^2 - 4 * 1*(-12)/(2 * 1)
= 14 + root(-14)^2 - 4 * 1 * (-12)/(2)
= 14 + root 244/(2)
= 14 + 2 root 61/(2)
= 2(7 + root 61)(2)
= 7 + root 61.
(2) b - root b^2 - 4ac/2a
= -(-14) - root (-14)^2 - 4 * 1 * (-12)/(2)
= 14 - root (-14)^2- 4 * 1 * (-12)/2
= 14 - 2 root 61/2
= 7 - root 61.
The solutions are 7 + root 61 and 7 - root 61.
Hope this helps!
a = 1, b = -14, c = -12.
For a quadratic equation of the form ax^2 + bx + c = 0 the solutions are
(1) -b + root b^2 - 4ac/2a.
= -(-14) + root (-14)^2 - 4 * 1*(-12)/(2 * 1)
= 14 + root(-14)^2 - 4 * 1 * (-12)/(2)
= 14 + root 244/(2)
= 14 + 2 root 61/(2)
= 2(7 + root 61)(2)
= 7 + root 61.
(2) b - root b^2 - 4ac/2a
= -(-14) - root (-14)^2 - 4 * 1 * (-12)/(2)
= 14 - root (-14)^2- 4 * 1 * (-12)/2
= 14 - 2 root 61/2
= 7 - root 61.
The solutions are 7 + root 61 and 7 - root 61.
Hope this helps!
Similar questions