Math, asked by fatima4650, 1 year ago

solve the following equation using the quadratic formula:[2÷(x+1)]=[5x÷(3-x)]


fatima4650: hi

Answers

Answered by Anonymous
1
hey mate
here's the solution
Attachments:

fatima4650: thank u sooo much:) :)
Answered by abhi569
1
Given equation : \dfrac{2}{x+1}=\dfrac{5x}{3-x}


 \implies  \bigg\{ \dfrac{2}{x + 1}  \times  \dfrac{3 - x}{3 - x}  \bigg \}  =  \bigg \{ \dfrac{5x}{3 - x}  \times  \dfrac{x + 1}{x + 1}  \bigg \} \\  \\  \\  \implies \dfrac{2(3 - x)}{(x + 1)(3 - x)} =  \dfrac{5x(x + 1)}{(3 - x)(x + 1)} \\  \\  \\  \implies \dfrac{2(3 - x)}{(x + 1)(3 - x)} -   \dfrac{5x(x + 1)}{(3 - x)(x + 1)}  = 0

 \implies \dfrac{ 2(3 - x)  -5x( x + 1) }{ (x + 1)(3 + x) } = 0 \\  \\  \\  \implies 2(3 - x)  -5x( x + 1)  = 0


\implies 6 - 2x - 5x^2 - 5x = 0 \\\\\implies -5x^2- 5x - 2x + 6 = 0 \\\\\implies 5x^2 + 7x - 6 = 0



On Comparing the formed equation with ax² + bx + c = 0, we get that a = 5 , b = 7 ,c = - 6



Now, by Shri Dharra Acharya's method ( Quadratic formula )

 \longrightarrow x =  \dfrac{  - b \pm \sqrt{ {b}^{2}  - 4ac}}{2a}




Substituting the values which are given in the question.


 \implies x =  \dfrac{ - 7  \pm \sqrt{(7) {}^{2}  - 4( - 6 \times 5)} }{2 \times 5}  \\  \\ \\  \implies x =  \frac{ - 7 \pm \sqrt{49 + 120} }{10}  \\  \\  \implies x = \dfrac{ - 7 +  \sqrt{169} }{10}  \:  \: or \:  \:  \dfrac{ - 7 -  \sqrt{169} }{10}

x = ( - 7 + 13 ) / 10 or ( - 7 - 13 ) / 10

x = 6 / 10 or - 20 / 10

x = 3 / 5 or - 2




Therefore the value of x satisfying the given equation is 3 / 5 or - 2 .

fatima4650: thank u friend...
abhi569: Welcome friend.
Similar questions