Math, asked by satyambharti76, 5 months ago

solve the following equations​

Attachments:

Answers

Answered by tanmay798
1

Answer:

value of x is -2........

Attachments:
Answered by Yuseong
3

Required Solution:

 \sf \blue { \dfrac{3x}{10(2-x)-3(x+2)}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{3x}{10(2-x)-3(x+2)}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{3x}{20-10x-3x-6}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{3x}{20-6-10x-3x}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{3x}{14-13x}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ 3x(40) = -6(14-13x) }

⠀⠀⠀

 \rm {⇢120x= -84+78x }

⠀⠀⠀

 \rm {⇢-84= 120x-78x }

⠀⠀⠀

 \rm {⇢-84= 42x }

⠀⠀⠀

 \rm {⇢x = \dfrac{-84}{42} }

⠀⠀⠀

 \boxed { \rm {⇢x = -2} }

______________________________

Verification!

Let's verify it also by substituting the value of x in the equation.

 \rm {⇢ \dfrac{3x}{10(2-x)-3(x+2)}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{3(-2)}{10[2-(-2)]-3(-2+2)}=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{-6}{10(4) \cancel{+6-6} }=\dfrac{-6}{40} }

⠀⠀⠀

 \rm {⇢ \dfrac{-6}{40}=\dfrac{-6}{40} }

Therefore,LHS = RHS

_______________________________

Similar questions