Math, asked by bhavinjohnbenny, 1 month ago

Solve the following equations
5/x - 1 - 1/y-2 = 2
6/x-1 - 3/y-2 = 1​

Answers

Answered by BrainlyTwinklingstar
4

Answer

\sf \dashrightarrow \dfrac{5}{x - 1} - \dfrac{1}{y - 2} = 2 \: \: --- (i)

\sf \dashrightarrow \dfrac{6}{x - 1} - \dfrac{3}{y - 2} = 1 \: \: --- (ii)

Let \sf \dfrac{1}{x - 1} be u.

Let \sf \dfrac{1}{y - 2} be v.

So, the equations become

\sf \dashrightarrow 5u - 1v = 2

\sf \dashrightarrow 6u - 3v = 1

By first equation,

\sf \dashrightarrow 5u - 1v = 2

\sf \dashrightarrow 5u = 2 + 1v

\sf \dashrightarrow u = \dfrac{2 + 1v}{5}

Now, let's find the value of v by second equation.

\sf \dashrightarrow 6u - 3v = 1

\sf \dashrightarrow 6 \bigg( \dfrac{2 + 1v}{5} \bigg) - 3v = 1

\sf \dashrightarrow \dfrac{12 + 6v}{5} - 3v = 1

\sf \dashrightarrow \dfrac{12 + 6v - 15v}{5} = 1

\sf \dashrightarrow \dfrac{12 - 9v}{5} = 1

\sf \dashrightarrow 12 - 9v = 5

\sf \dashrightarrow -9v = 5 - 12

\sf \dashrightarrow -9v = -7

\sf \dashrightarrow v = \dfrac{-7}{-9}

\sf \dashrightarrow v = \dfrac{7}{9}

Now, we can find the value of u by first equation.

\sf \dashrightarrow 5u - 1v = 2

\sf \dashrightarrow 5u - 1 \bigg( \dfrac{7}{9} \bigg) = 2

\sf \dashrightarrow 5u - \dfrac{7}{9} = 2

\sf \dashrightarrow \dfrac{45u - 7}{9} = 2

\sf \dashrightarrow 45u - 7 = 9 \times 2

\sf \dashrightarrow 45u - 7 = 18

\sf \dashrightarrow 45u = 18 + 7

\sf \dashrightarrow 45u = 25

\sf \dashrightarrow u = \dfrac{25}{45}

\sf \dashrightarrow u = \dfrac{5}{9}

We know that,

\sf \dashrightarrow \dfrac{1}{x - 1} = u

\sf \dashrightarrow \dfrac{1}{x - 1} = \dfrac{5}{9}

\sf \dashrightarrow 9 = 5(x - 1)

\sf \dashrightarrow 5x - 5 = 9

\sf \dashrightarrow 5x = 9 + 5

\sf \dashrightarrow 5x = 14

\sf \dashrightarrow x = \dfrac{14}{5}

We also know that,

\sf \dashrightarrow \dfrac{1}{y - 2} = v

\sf \dashrightarrow \dfrac{1}{y - 2} = \dfrac{7}{9}

\sf \dashrightarrow 9 = 7(y - 2)

\sf \dashrightarrow 7y - 14 = 9

\sf \dashrightarrow 7y = 9 + 14

\sf \dashrightarrow 7y = 23

\sf \dashrightarrow y = \dfrac{23}{7}

Hence, the values of x and y are 14/5 and 23/7 respectively.


MasterDhruva: Nice!
Similar questions