Math, asked by prathajha, 1 month ago

solve the following equations and check your answer 1. X+3/7-2x-5/3=3x-5/5-25​

Attachments:

Answers

Answered by ImperialGladiator
166

Question:

 \rm \implies \:  \dfrac{x + 3}{7}  -  \dfrac{2x - 5}{3}  =  \dfrac{3x - 5}{5}  - 25

Answer:

\rm \bullet \:\: x = 25

Explanation:

 \rm \implies \:  \dfrac{x + 3}{7}  -  \dfrac{2x - 5}{3}  =  \dfrac{3x - 5}{5}  - 25

 \rm \implies \:  \dfrac{3(x + 3) - 7(2x - 5)}{21} =  \dfrac{3x - 5 - 125}{5}

 \rm \implies \:  \dfrac{3x + 9 - 14x  + 35}{21} =  \dfrac{3x - 130}{5}

 \rm \implies \:  \dfrac{ - 11x  + 44}{21} =  \dfrac{3x - 130}{5}

 \rm \implies \:  { 5(- 11x + 44)}=  {21(3x - 130)}

 \rm \implies \:  { - 55x + 220}=  {63x - 2730}

 \rm \implies \:  {2730 + 220}=  {63x  + 55x}

 \rm \implies \: 2950=  118x

 \rm \implies \:  \dfrac{2950}{118}=  x

 \rm \implies \:  25 = x

 \rm \therefore \:  x = 25

Verification:

 \rm \implies \:  \dfrac{x + 3}{7}  -  \dfrac{2x - 5}{3}  =  \dfrac{3x - 5}{5}  - 25

Substituting the value of x

 \rm \implies \:  \dfrac{25 + 3}{7}  -  \dfrac{2(25) - 5}{3}  =  \dfrac{3(25) - 5}{5}  - 25

 \rm \implies \:  \dfrac{28}{7}  -  \dfrac{50- 5}{3}  =  \dfrac{75 - 5}{5}  - 25

 \rm \implies \:  4  -  \dfrac{45}{3}  =  \dfrac{70}{5}  - 25

 \rm \implies \:  4  - 15  =  14  - 25

 \rm \implies \:   - 9 =  -9

Hence, verified!

Answered by ItzDinu
72

\huge【\: \underline{\rm {\boxed{ \red{Answer}}}} \: 】

Firstly, take L.C.M. of 7 and 3=21 and secondly, the L.C.M. of 5 and 1=5.

So, 3x+9-14x+35/21-3x-130/5.

-11x+44/21-3x-130/5

-55x+220-63x-2730

-55x-63x=-2730-220(- and - cancelled on both sides)

118x=2950

x=2950/118

X=25

  • I Hope It's Helpful.
Similar questions