Math, asked by mamta10july1980, 1 month ago

solve the following equations and verify the solutions​

Attachments:

Answers

Answered by agrawalkartik1234567
0

Step-by-step explanation:

ots answer I did my all tried then I found it

Attachments:
Answered by mathdude500
0

\large\underline{\sf{Given \:Question - }}

Solve and verify the solution :

\rm :\longmapsto\:y + 1 - \dfrac{7}{3} y = \dfrac{11}{9} -  \dfrac{5y}{6}

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:y + 1 - \dfrac{7}{3} y = \dfrac{11}{9} -  \dfrac{5y}{6}

can be rewritten as

\rm :\longmapsto\:y + 1 - \dfrac{7y}{3}  = \dfrac{11}{9} -  \dfrac{5y}{6}

\rm :\longmapsto\: \dfrac{3y + 3 - 7y}{3}  = \dfrac{22 - 15y}{18}

\rm :\longmapsto\: \dfrac{3 - 4y}{3}  = \dfrac{22 - 15y}{18}

\rm :\longmapsto\:18(3 - 4y) = 3(22 - 15y)

\rm :\longmapsto\:54 - 72y =66 - 45y

\rm :\longmapsto\:- 72y  + 45y=66 -54

\rm :\longmapsto\:- 27y  =12

\rm :\longmapsto\:y =  -  \: \dfrac{12}{27}

\bf :\longmapsto\: \boxed{ \bf{ \:  \: y \:  = \:   -  \: \dfrac{4}{9} \:  \:  }}

Verification

Consider LHS

\rm :\longmapsto\:y + 1 - \dfrac{7}{3} y

\rm \:  =  \: - \dfrac{4}{9}  + 1  +  \dfrac{7}{3}  \times \dfrac{4}{9}

\rm \:  =  \: - \dfrac{4}{9}  + 1  +  \dfrac{28}{27}

\rm \:  =  \:  \dfrac{ - 12 + 27 + 28}{9}

\rm \:  =  \:  \dfrac{ 15 + 28}{9}

\rm \:  =  \:  \dfrac{43}{9}

Consider RHS

\rm :\longmapsto\:\dfrac{11}{9} -  \dfrac{5y}{6}

\rm \:  =  \:\dfrac{11}{9}  + \dfrac{5}{6}  \times \dfrac{4}{9}

\rm \:  =  \:\dfrac{11}{9}  + \dfrac{10}{27}

\rm \:  =  \:\dfrac{33 + 10}{27}

\rm \:  =  \:\dfrac{43}{27}

\bf\implies \:LHS \: = \: RHS

Hence,

\bf :\longmapsto\: \boxed{ \bf{ \:  \: y \:  = \:   -  \: \dfrac{4}{9} \:  \:  }}

Similar questions