Solve the following equations by factorization method:
4 x^2 - 4 a^2 x + ( a^4 - b^4 ) = 0
Answers
Answered by
21
Solution-
Here, we have
4x² - 4a²x + (a⁴ - b⁴) = 0
Constant term = a⁴ - b⁴ = (a² - b²) (a² + b²)
Coefficient of middle term = - 4a²
Coefficient of middle term = - 4a² = - [2(a² + b²) + 2(a² - b²)]
Then,
⇒ 4x² - 4a²x + (a⁴ - b⁴) = 0
⇒ 4x² - [2(a² + b²) + 2(a² - b²)]x + (a² - b²) (a² + b²) = 0
⇒ 4x² - 2(a² + b)x - 2(a² - b²)x + (a² - b²) (a² + b²) = 0
⇒ [4x² - 2(a² + b²)x] - [2(a² - b²)x - (a² - b²) (a² + b²) = 0
⇒ 2x[2x - (a² + b²)] - (a² - b²) [2x - (a² + b²)] = 0
⇒ [2x - (a² + b²)] [2x - (a² - b²)] = 0
⇒ 2x - (a² + b²) = 0 or 2x - (a² - b²) = 0
⇒ x = a² + b²/2, a² - b²/2
⇒ x = a² + b²/2, a² - b²/2
Hence, x = a² + b²/2, a² - b²/2.
Answered by
0
Answer:
me Kuch bhi answer Karu tuze kya Karna he correct du ya bakwas
Tu aapna dekhe pehele ....hehe
Attachments:
Similar questions