Math, asked by vishwakarmakajal9891, 17 days ago

Solve the following equations by the method of inversion. (i) x + y = 1, y + z =5/3 , z +x=4/3 [ Find A inverse using row transformations.]
please solve this question and steps by steps​

Answers

Answered by xaviervanderbie
0

Answer:

a

Step-by-step explanation:

Answered by sofianhendrik
1

Answer:

For getting the inverse of the given matrix A by row elementary operations we may write the given matrix as A=IA  

And, we know AA  

−1

=I

Now ∣A∣=2×7+1×(−12)+3×(−1)=14−12−3=−1

=0

So, A  

−1

 is possible.

∵  

 

2

−5

−3

 

−1

3

2

 

3

1

3

 

=  

 

1

0

0

 

0

1

0

 

0

0

1

 

A

[R  

2

→R  

2

+R  

1

]

⇒  

 

2

−3

−3

 

−1

2

2

 

3

4

3

 

=  

 

1

1

0

 

0

1

0

 

0

0

1

 

A

[  

∵R  

3

 

R  

3

 

R  

2

 

]

⇒  

 

2

−3

0

 

−1

2

0

 

3

4

−1

 

=  

 

1

1

−1

 

0

1

−1

 

0

0

1

 

A

[  

R  

1

 

R  

1

+

 

R  

2

 

]

⇒  

 

−1

−3

0

 

1

2

0

 

7

4

−1

 

=  

 

2

1

−1

 

1

1

−1

 

0

0

1

 

A

[  

∵R  

2

 

R  

2

 

3R  

1

 

]

⇒  

 

−1

0

0

 

1

−1

0

 

7

−17

−1

 

=  

 

2

−5

−1

 

1

−2

−1

 

0

0

1

 

A

[  

∵R  

1

andR  

3

 

R  

1

+

−1

 

R  

2

 

×R  

3

 

]

⇒  

 

−1

0

0

 

0

−1

0

 

−10

−17

1

 

=  

 

−3

−5

1

 

−1

−2

1

 

0

0

−1

 

A

[  

∵R  

1

andR  

2

 

R  

1

+

R  

2

+

 

10R  

3

 

17R  

3

 

]  

⇒  

 

−1

0

0

 

0

−1

0

 

0

0

1

 

=  

 

7

12

1

 

9

15

1

 

−10

−17

−1

 

A

[  

∵R  

1

andR  

2

 

−1R  

1

 

−1R  

2

 

]

⇒  

 

1

0

0

 

0

1

0

 

0

0

1

 

=  

 

−7

−12

1

 

−9

−15

1

 

10

17

−1

 

A

As, I=A  

−1

A=AA  

−1

 

So, the inverse of A is A  

−1

=  

 

−7

−12

1

 

−9

−15

1

 

10

17

−1

 

 

Step-by-step explanation:

Similar questions