Math, asked by hasna42, 25 days ago

solve the following equations by using the methods of substitution. 2x/a+y/b=2 x/a-y/b=4​

Answers

Answered by akshaybarhate117
0

Step-by-step explanation:

2x+ by =2,

ax − by =4

2bx+ay=2ab, bx−ay=4ab

Add the two equations,

3bx=6ab

x=2a

Now, 2b(2a)+ay=2ab

ay=−2ab

y=−2b

Answered by MathHacker001
84

Appropriate Question :-

Solve the following equations by using the method substitution :  \rm{ \frac{2x}{a}  +  \frac{y}{b} = 2 } \\ and  \rm{ \frac{x}{a}  -  \frac{y}{b}  = 4} \\ .

Solution :-

Cross multiplication of equation (1)

\sf:\longmapsto{ \frac{2x}{a} +  \frac{y}{b}  = 2 }  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \\  \\ \sf:\longmapsto{2xb + ay = 2}  \:  \:  \:  \:  \:  \:  \:  \: ... \{eq {}^{n}(1) \}

Cross multiplication of equation (2)

\sf:\longmapsto{ \frac{x}{a}  -  \frac{y}{b} = 4  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{xb - ay = 4} \:  \:  \:  \:  \:  \:  \: ... \{eq {}^{n}  \: (2) \}

Add both equation

\sf:\longmapsto{2xb + ay + (xb - ay) = 2 + 4} \\  \\ \sf:\longmapsto{2xb + xb + ay - ay = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf:\longmapsto{3xb = 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf:\longmapsto{xb = \cancel  \frac{6}{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ \boxed{ \sf \red{xb = 2}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substitute xb = 2 in eq (1)

\sf:\longmapsto{2(2) + ay = 2} \\  \\ \sf:\longmapsto{4 + ay = 2} \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ay = 2 - 4} \:  \:  \:  \\  \\ \sf:\longmapsto{ \boxed{ \sf{ \red{ay =  - 2}}}} \:  \:  \:  \:

Answer :

  • xb = 2
  • ay = -2

Verification :-

Substitute xb = 2 and ay = -2 in eq (2)

\sf:\longmapsto{2 - ( - 2) = 4}  \\  \\ \sf:\longmapsto{2 + 2 = 4} \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ {\underline{\underline{ \red{4 = 4}}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence Verified !

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions