Math, asked by crystinia, 1 year ago

Solve the following equations.

=>  \frac{6m+1}{3} + 1 = \frac{m-3}{6}

=>5b-2(2b-7)=2(3b-1)+ \frac{7}{2}

Answers

Answered by MarkAsBrainliest
8
\bold{Answer :}

\bold{(1)}

Given that,

(6m + 1)/3 + 1 = (m - 3)/6

or, (6m + 1 + 3)/3 = (m - 3)/6

or, (6m + 4)/3 = (m - 3)/6

or, 6 (6m + 4)/3 = m - 3

or, 2 (6m + 4) = m - 3

or, 12m + 8 = m - 3

or, 12m - m = - 3 - 8

or, 11m = - 11

or, m = - 11/11

or, m = - 1

Therefore, the required solution be \bold{m = -1}.

\bold{(2)}

Given that,

5b - 2 (2b - 7) = 2 (3b - 1) + 7/2

or, 5b - 4b + 14 = 6b - 2 + 7/2

or, b + 14 = 6b - 2 + 7/2

or, 6b - b = 14 + 2 - 7/2

or, 5b = (28 + 4 - 7)/2

or, 5b = 25/2

or, b = 25/(2 × 5)

or, b = 5/2

Therefore, the required solution be \bold{b = 5/2}

#\bold{MarkAsBrainliest}

crystinia: Awesome
Answered by Anonymous
12

\textbf{Question :- 1  }

=>  \frac{6m + 1}{3} + 1 = \frac{m - 3}{6}

\textbf{Solution :-}

\frac{6m + 1}{3} + 1 = \frac{m - 3}{6} .

=>  \frac{6m + 1 + 3}{3} = \frac{m - 3}{6}

=>  \frac{6m + 4}{3} = \frac{m - 3}{6}

=> On multiplying { 6m + 4 } by 6 and { m - 3} by 3

=> we get ,

=> 36m + 24 = 3m - 9

=> 36m - 3m = { - 9 } - 24

=> 33m = { - 33 }

=> m =>  \frac{-33}{33}

=> m = - 1

\textbf{Hence , the value of " m " is - 1}

\textbf{Question : 2}

♧ 5b - 2 ( 2b - 7 ) = 2( 3b - 1 ) +  \frac{7}{2}

\textbf{Solution :-}

=> 5b - 4b + 14 = ( 6b - 2 ) +  \frac{7}{2}

On taking L.C.M. of R.H.S.

=> b + 14 = [ 12b - 4 + 7 ] / 2

=> b + 14 = [ 12b + 3 ] / 2

On multiplying { b - 14 } by 2 ,

=> 2b + 28 = 12b + 3

=> 2b - 12b = 3 - 28

=> - 10b = - 25

=> b = 25 / 10

=> b = 5 / 2 or 2.5

\textbf{Hence , the value of " b " is 5 / 2}



\textbf{Thanks !}
Similar questions