Math, asked by zainabsiwon13, 10 months ago

Solve the following equations in complex numbers and write your answer in polar and rectangular form
z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z = 0.

Answers

Answered by MaheswariS
0

\textbf{Given:}

z^7+z^6+z^5+z^4+z^3+z^2+z=0

\textbf{To find:}

\text{Roots of the equation}

\textbf{Solution:}

\text{Consider,}

z^7+z^6+z^5+z^4+z^3+z^2+z=0

\text{This is a finite G.P series containing 7 terms}

\text{Using the formula $\bf\,S_n=\dfrac{a(^n-1)}{r-1}$, we get}

\dfrac{z(z^7-1)}{z-1}=0

\implies\,z(z^7-1)=0

\implies\,z=0\;\text{or}\;z^7-1=0

z^7-1=0

z^7=1

z=1^{\frac{1}{7}}

z=[cos0+i\,sin0]^{\frac{1}{7}}

z=[cos\,2k\pi+i\,sin\,2k\pi]^{\frac{1}{7}}

\text{Using demovire's theorem, we get}

\bf\,z=cos\,\frac{2k\pi}{7}+i\,sin\frac{2k\pi}{7}   \text{k=0,1,2...6}

\therefore\textbf{The required roots are}

\bf\,z=0

\bf\,z=cos\,0+i\,sin0

\bf\,z=cos\,\frac{2\pi}{7}+i\,sin\frac{2\pi}{7}

\bf\,z=cos\,\frac{4\pi}{7}+i\,sin\frac{4\pi}{7}

\bf\,z=cos\,\frac{6\pi}{7}+i\,sin\frac{6\pi}{7}

\bf\,z=cos\,\frac{8\pi}{7}+i\,sin\frac{8\pi}{7}

\bf\,z=cos\,\frac{10\pi}{7}+i\,sin\frac{10\pi}{7}

\bf\,z=cos\,\frac{12\pi}{7}+i\,sin\frac{12\pi}{7}

Similar questions