Math, asked by ayushkumar24122008, 1 month ago

Solve the following equations using systematic method.​

Attachments:

Answers

Answered by kinzal
4

(e)

  •  \sf 4x - \frac{7}{2} = \frac{1}{2} \\

  •  \sf 4x = \frac{1}{2} + \frac{7}{2}  \\

  •  \sf 4x = \frac{8}{2}  \\

  •  \sf 4x = \frac{\cancel{8}^{\: \: 4 × \cancel{2}} }{\cancel{2}}  \\

  •  \sf 4x = 4 \\

  •  \sf x = \frac{4}{4} \\

  •  \purple{\underline{\boxed{\bf x = 1}}} \\

(f)

  •  \sf 6z + 6 = - 12 \\

  •  \sf 6z = - 12 - 6 \\

  •  \sf 6z = - 18 \\

  •  \sf z = \frac{\cancel{-18}^{\: \: \cancel{6} × -3 } }{\cancel{6}} \\

  •  \purple{\underline{\boxed{\bf z = -3 }}} \\

(i)

  •  \sf 3y + 4 = - 5 \\

  •  \sf 3y = - 5 - 4 \\

  •  \sf 3y = - 9 \\

  •  \sf y = \frac{\cancel{-9}^{\: \: -3 × \cancel{3} }}{\cancel{3}} \\

  •  \purple{\underline{\boxed{\bf y = -3 }}} \\

(j)

  •  \sf \frac{2r}{5} - 1 = 3 \\

  •  \sf \frac{2r}{5} = 3 + 1 \\

  •  \sf \frac{2r}{5} = 4 \\

  •  \sf 2r = 4 × 5 \\

  •  \sf r = \frac{\cancel{4}^{\: \: 2 × \cancel{2}} × 5 }{\cancel{2}} \\

  •  \sf r = 2 × 5 \\

  •  \sf \purple{\underline{\boxed{\bf r = 10 }}} \\

I hope it helps you ❤️✔️

Similar questions