Science, asked by kalamansari4465, 8 months ago

Solve the following examples f.The masses of the erath and Moon are 6*10²⁴ kg and 7.4*10²² kg, respectively.The distance between them is 3.84*10^5 km. Calculate the garavitation force of attraction between the two Use G=6.7*10-¹¹ N m² kg-²​

Answers

Answered by kanishka12679
5

Answer:

Given that,

Mass of the Earth m

1

=6×10

24

Kg

Mass of the Moon m

2

=7.4×10

22

kg

Distance between the Earth and the Moon d=3.84×10

5

km=3.84×10

8

m

Gravitational Constant G=6.7×10

−11

Nm

2

/kg

2

Now, by using Newton’s law of gravitation

F=

r

2

Gm

1

m

2

F=

(3.84×10

8

)

2

6.7×10

−11

×6×10

24

×7.4×10

22

F=

14.8225×10

16

297.48×10

35

F=20.069×10

19

F=20.1×10

19

N

Hence, the gravitational force of attraction is 20.1×10

19

N

Explanation:

I think it is helpfull for you

please mark as BRAINLEST

Answered by shaktisrivastava1234
11

 \huge  \sf  {\fbox{\fbox{\red{\fbox{Answer:}}}}}

 \huge \bf{Given:-}

\sf {→Mass \: of \: the \: earth,m_1 = 6 \times{{10}^{24} }}

 \sf {→Mass \: of \: the \: moon,m_2 = 7.4\times{{10}^{22} }}

\sf {→Distance \: between \: the \: earth \: and \: moon,r = 3.84\times{{10}^{5} }}

\sf {→Distance \: between \: the \: earth \: and \: moon,r = (3.84\times{{10}^{5} \times 1000)m }}

 \sf {→Distance \: between \: the \: earth \: and \: moon,r = 3.84\times{{10}^{8}m}}

 \huge \bf{To \: find:- }

\sf{⇒Force \: exerted \: to \: one \: body \: to \: another \: body.}

 \huge \bf{Formula \: used: - }

  \leadsto\sf{F =G \times  \frac{m_1 \times m_2}{r^2}  }

 \huge \bf{Concept \: used: - }

  \sf{Gravitational \: constant,G=6.7 \times {10}^{- 11N} N{m}^{2}k  {g}^{ - 2}  }

  \huge\bf{According \: to \: Question:-}

\bf{F = \frac{6.7 \times  {10}^{ - 11}  \times 6 \times  {10}^{24}  \times 7.4 \times  {10}^{22}} {(3.84 \times  {10}^{8} )^{2} } = 2.01 \times  {10}^{20} newtons}

 \sf\longmapsto{2.01 \times  {10}^{20} newtons}

_________________________________________________

Similar questions