Math, asked by zengzeng, 1 year ago

solve the following exponential equations 2^x=(root2)^4 × (128)^1/7

Answers

Answered by MarkAsBrainliest
10

Answer :

Given that,

 {2}^{x}  =  {( \sqrt{2} )}^{4}  \times  {128}^{ \frac{1}{7} }  \\  \\  \implies  {2}^{x}  =  {( {2}^{ \frac{1}{2} }) }^{4}  \times  {( {2}^{7}) }^{ \frac{1}{7} }  \\  \\  \implies {2}^{x}  =  {2}^{ \frac{4}{2} }  \times  {2}^{ \frac{7}{7} }  \\  \\  \implies {2}^{x}  =  {2}^{2}  \times  {2}^{1}  \\  \\  \implies {2}^{x}  =  {2}^{(2 + 1)}  \\  \\   \implies {2}^{x}  =  {2}^{3}

Now, comparing the like powers of 2 from both sides, we get

x = 3

#MarkAsBrainliest

Similar questions