Math, asked by zengzeng, 1 year ago

solve the following exponential equations 4^x × 2^x=(32)1/5 × (8)1/3

Answers

Answered by MarkAsBrainliest
2

Answer :

Given that,

 {4}^{x} \times {2}^{x} = {32}^{ \frac{1}{5} } \times {8}^{ \frac{1}{3} } \\ \\ \implies {( {2}^{2} )}^{x} \times {2}^{x} = {( {2}^{5} )}^{ \frac{1}{5} } \times { ({2}^{3}) }^{ \frac{1}{3} } \\ \\ \implies {2}^{2x} \times {2}^{x} = {2}^{ \frac{5}{5} } \times {2}^{ \frac{3}{3} } \\ \\ \implies {2}^{(2x + x)} = {2}^{1} \times {2}^{1} \\ \\ \implies {2}^{3x} = {2}^{(1 + 1)} \\ \\ \implies {2}^{3x} = {2}^{2}

Now, comparing the like powers of 2, we get

3x = 2

i.e., x = \frac{2}{3}

#MarkAsBrainliest

Answered by camilbovine
0

Answer:

2

Step-by-step explanation:

Similar questions