Math, asked by Anonymous, 5 days ago

Solve the following for value of x :-

 \sf{ \dfrac{2x}{5} + 4 = 10 }
 \\

 \sf{ 2x - 3 = 7 }

Answers

Answered by pynbiangsuchiang
8

Answer:

Hope this helps you mate, mark me as brain list

Attachments:
Answered by Anonymous
33

Given :

  •  \sf{ \dfrac{2x}{5} + 4 = 10 }

 \\ \\

To Find :

  • Value of x = ?

 \\ \\

SolutioN :

 \dag Let's Calculate the Value of x :

 {\longmapsto{\qquad{\sf{ \dfrac{2x}{5} + 4 = 10 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{2x}{5} = 10 - 4 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{2x}{5} = 6 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 2x = 6 \times 5 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 2x = 30 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ x = \dfrac{30}{2} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ x = \cancel\dfrac{30}{2} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\purple{\pmb{\frak{ x = 15 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag Therefore :

❛❛ Value of x is 15 . ❜❜

 \\ {\underline{\rule{200pt}{3pt}}}

Given :

  • 2x - 3 = 7

 \\ \\

To Find :

  • Value of x = ?

 \\ \\

SolutioN :

 \dag Let's Calculate the Value of x :

 {\dashrightarrow{\qquad{\sf{ 2x - 3 = 7 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 2x = 7 + 3 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 2x = 10 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ x = \dfrac{10}{2} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ x = \cancel\dfrac{10}{2} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pink{\pmb{\frak{ x = 5 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag Therefore :

❛❛ Value of x is 5 . ❜❜

 \\ {\underline{\rule{200pt}{3pt}}}

Similar questions