Math, asked by TheUnknownLily, 3 months ago

Solve the following having equal roots :

1: x² - ( k + 4 )x + 2x + 5 = 0
2: ( k - 12 )x² + 2 ( k - 12 )x + 2 = 0

Spam = 20 answers report

Answers

Answered by BRAINLYxKIKI
24

 {\fcolorbox{aqua}{black}{\orange{ Questions\:provided\:➪ }}}

1.  \sf{\red{x² - ( k + 4 )x + 2x + 5 \:=\: 0}}

2.  \sf{\red{( k - 12 )x² + 2 ( k - 12 )x + 2 \:=\:0}}

 {\fcolorbox{blue}{black}{\green{ Here\:are\:the\:Answers\:: }}}

1.  \sf{x² - ( k + 4 )x + 2x + 5 \:=\: 0}

Here ,

ㅤa = 1ㅤ,ㅤb = -( k + 4 )ㅤ,ㅤc = ( 2x + 5 )

°•° The given equation have equal roots

•°•ㅤㅤㅤ\boxed{\sf{\blue{b² \:-4ac\:=\:0}}}

➪ {-( k + 4 )}² - 4 × ( 1 ) × ( 2x + 5 ) = 0

➪ k² + 8k + 16 - 8k - 20 = 0

➪ k² + 16 - 20 = 0ㅤㅤ[ 8k are cancelled ]

➪ k² - 4 = 0

➪ k² ㅤ = 0 + 4

➪ kㅤㅤ= \pm \sqrt{4}

➪ kㅤㅤ= \pm \sf{2}

★ k = 2 , -2

2.  \sf{( k - 12 )x² + 2 ( k - 12 )x + 2 \:=\:0}

Here ,

ㅤa = ( k - 12 ) , b = 2( k - 12 ) , c = 2

°•° The given equation have equal roots

•°• ㅤㅤㅤ\boxed{\sf{\blue{b²\:-4ac\:=\:0}}}

➪ {2•( k - 12 )}² - 4 × ( k - 12 ) × ( 2 ) = 0

➪ 4 ( k - 12 )² - 8 ( k - 12 ) = 0

➪ 4( k - 12 )( k - 12 ) ( k - 12 - 2 ) = 0

➪ 4 ( k - 12 ) ( k - 14 ) = 0

➪ ( k - 12 ) ( k - 14 ) = \dfrac{0}{4}

➪ ( k - 12 ) ( k - 14 ) = 0

•°• Either ( k - 12 ) = 0 ; ( k - 14 ) = 0

ㅤㅤㅤㅤㅤ➪ k = 12 ㅤ ;ㅤ➪ k = 14

ㅤㅤㅤ ʙʀɪɴʟʏ×ɪɪ

Answered by itzbangtanarmy7
4

Answer:

 \huge \mathfrak \anser =  \to

see the attached picture..hope this helps you (:

Attachments:
Similar questions