Solve the following homogenous differential equation (x2y - 2xy2) dx - (x3 - 3x2y) dy = 0.
Answers
Step-by-step explanation:
The given homogeneous differential equation is
(x²y - 2xy²) dx - (x³ - 3x²y) dy = 0
or, dy/dx = (x²y - 2xy²)/(x³ - 3x²y)
or, dy/dx = {(x/y)² - 2 (x/y)}/{(x/y)³ - 3 (x/y)²}
[ dividing numerator and denominator by y³ ]
Let y = vx. Then dy/dx = v + x dv/dx
Continuing,
v + x dv/dx = (1/v² - 2/v)/(1/v³ - 3/v²)
or, v + x dv/dx = (v - 2v²)/(1 - 3v)
or, x dv/dx = (v - 2v² - v + 3v²)/(1 - 3v)
or, x dv/dx = v²/(1 - 3v)
or, (1 - 3v)/v² * dv = dx/x
or, dv/v² - 3 dv/v = dx/x
On integration, we get
∫ dv/v² - 3 ∫ dv/v = ∫ dx/x
or, - 1/v - 3 logv = logx + logc [ logc = int. const. ]
or, - 1/v - log(v³) = log(cx)
or, 1/v = - {log(v³) + log(cx)}
or, 1/v = - {log(cxv³)}
or, x/y = - {log(c * x * y³/x³)} [ ∵ v = y/x ]
or, x/y = - log(cy³/x²)
or, x/y = log(x²/cy³)
This is the required primitive. (Ans.)