Math, asked by nikhilsairamreddy, 1 month ago

Solve the following inequality
(2x-7-5x^2)(x^2-5x+6)(x+1)>0

Answers

Answered by shadowsabers03
3

We're given to solve the inequality,

\longrightarrow(2x-7-5x^2)(x^2-5x+6)(x+1)>0

When we multiply both sides by -1 and make the term 2x-7-5x^2 become 5x^2-2x+7 the inequality symbol changes as,

\longrightarrow(5x^2-2x+7)(x^2-5x+6)(x+1)<0\quad\quad\dots(1)

For the term 5x^2-2x+7 the discriminant is negative.

\longrightarrow D=(-2)^2-4\cdot5\cdot7

\longrightarrow D=-136

Since a=5>0 and D=-136<0,

\longrightarrow5x^2-2x+7>0

Therefore (1) implies,

\longrightarrow(x^2-5x+6)(x+1)<0\quad\quad\dots(2)

because a positive number is multipied with a negative number to get negative product.

Factorising x^2-5x+6,

\longrightarrow x^2-5x+6=x^2-2x-3x+6

\longrightarrow x^2-5x+6=x(x-2)-3(x-2)

\longrightarrow x^2-5x+6=(x-2)(x-3)

Then (2) becomes,

\longrightarrow(x+1)(x-2)(x-3)<0

Using wavy curve method,

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\multiput(15,0)(15,0){3}{\circle{1.5}}\put(12,-5){$-1$}\put(29,-5){$2$}\put(44,-5){$3$}\multiput(0,-15)(45,15){2}{\qbezier(0,0)(7.5,7.5)(15,15)}\qbezier(15,0)(22.5,7.5)(30,0)\qbezier(30,0)(37.5,-7.5)(45,0)\end{picture}

Hence the solution is,

\longrightarrow\underline{\underline{x\in(-\infty,\ -1)\cup(2,\ 3)}}

Similar questions