Solve the following inequality (step-by-step):
Answers
Answered by
0
Step-by-step explanation:
(6x−5)∣ln(2x−2.3)∣=8ln(2x+2.3)
We know that ln x>0∀x>1
and lnx<0∀
0
<x<1
∴(6x−5)∣ln(2x+2.3)∣=8ln(2x+2.3)
case I :
If 2x+2.3>1
⇒x≥−1.3/2
⇒x≥−13/20, then
(6x−5)ln(2x+2.3)−8ln(2x+2.3)=0
⇒ln(2x+2.3)[6x−13]=0
∴ln(2x+2.3)=0 or 6x−13=0
⇒2x+2.3=1 or x=13/6
x=−13/20 or x=13/6
case 2 :
if 2x+2.3<1⇒x<−13/20 then
−(6x−5)ln(2x+2.3)−8ln(2x+2.3)=0
⇒ln(2x+2.3)(6x+3)=0
∴ln(2x+2.3)=0 = or 6x+3=0
2x+2.3=1 or x=−1/2
x=−13/20
However in the case 2 the allowed region is a<−13/20
Hence x=−13/20 & −1/2 are not permissible
∴x=−13/20 & x=13/6 are the only solution possible
Similar questions
Science,
7 days ago
Accountancy,
7 days ago
Math,
7 days ago
English,
15 days ago
English,
15 days ago
Physics,
8 months ago
English,
8 months ago
Political Science,
8 months ago