Math, asked by aryan021212, 16 days ago

Solve the following inequality

 \frac{1}{x - 1}  -  \frac{1}{x - 4} -  \frac{4}{x - 2}  +  \frac{4}{x - 3} <  \frac{1}{30}  \\

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given inequality is

\dfrac{1}{x - 1} - \dfrac{1}{x - 4} - \dfrac{4}{x - 2} + \dfrac{4}{x - 3} < \dfrac{1}{30} \\

\dfrac{x - 4 - x + 1}{(x - 1)(x - 4)}+ \dfrac{4x - 8 - 4x + 12}{(x - 3)(x - 2)} < \dfrac{1}{30} \\

\dfrac{ - 3}{(x - 1)(x - 4)}+ \dfrac{4}{(x - 3)(x - 2)} < \dfrac{1}{30} \\

\dfrac{ - 3}{ {x}^{2}  - 5x + 4}+ \dfrac{4}{ {x}^{2}  - 5x + 6} < \dfrac{1}{30} \\

Let assume that

\rm \:  {x}^{2} - 5x + 4 = y \\

So, above expression can be rewritten as

\rm \: \dfrac{ - 3}{y}  + \dfrac{4}{y + 2}  < \dfrac{1}{30}  \\

\rm \: \dfrac{ -3 y - 6 + 4y}{y(y + 2)}  < \dfrac{1}{30}  \\

\rm \: \dfrac{y - 6}{y(y + 2)}  < \dfrac{1}{30}  \\

\rm \: \dfrac{y - 6}{y(y + 2)}   -  \dfrac{1}{30} < 0  \\

\rm \: \dfrac{30y - 180 -  {y}^{2} - 2y }{30y(y + 2)} < 0  \\

\rm \: \dfrac{ -  {y}^{2} + 28y  - 180}{30y(y + 2)} < 0  \\

\rm \: \dfrac{{y}^{2} - 28y + 180}{y(y + 2)}  >  0  \\

\rm \: \dfrac{(y - 10)(y - 18)}{y(y + 2)}  >  0  \\

Using number line method, we have

\rm\implies \:y \in \: ( -  \infty , - 2) \cup \: (0,10) \cup \: (18, \infty ) \\

Consider Case :- 1

\rm \: y \in \: ( -  \infty , - 2) \\

\rm \: y <  - 2

\rm \:  {x}^{2} - 5x + 4 <  - 2 \\

\rm \:  {x}^{2} - 5x + 6 <  0\\

\rm \: (x - 2)(x - 3) < 0 \\

\rm\implies \:x \:  \in \: (2,3) \: \cdots \: (1) \\

Consider, Case :- 2

\rm \: y \:  \in \: (0,10) \\

\rm \: y > 0 \:  \:and \:  \: y < 10 \\

\rm \:  {x}^{2} - 5x + 4 > 0 \:  \:and \:  \:  {x}^{2} - 5x + 4  < 10 \\

\rm \:  (x - 1)(x - 4) > 0 \:  \:and \:  \:  {x}^{2} - 5x - 6  < 0 \\

\rm \:  (x - 1)(x - 4) > 0 \:  \:and \:  \: (x - 6)(x + 1)< 0 \\

\rm\implies \:x \:  \in \: ( - 1,1) \:  \cup \: (4,6) \:  \cdots \: (2) \\

Consider Case :- 3

\rm \: y > 18 \\

\rm \:  {x}^{2} - 5x + 4  > 18 \\

\rm \:  {x}^{2} - 5x  - 14  > 0\\

\rm \: (x - 7)(x + 2) > 0 \\

\rm\implies \:x \:  \in \: ( -  \infty , - 2) \:  \cup \: (7, \infty ) \:  \cdots \: (3) \\

So, Combining equation (1), (2) and (3), we get

\rm\implies \:x \in ( -  \infty , - 2) \cup( - 1,1)\cup (2,3) \cup(4,6) \cup (7, \infty ) \\

Attachments:
Similar questions